Volume 37 Issue 6
Dec.  2023
Turn off MathJax
Article Contents
CAI Y Q, YANG X L, WANG K X, et al. Experimental study on the effect of two-stage radial spacing on flow field and atomization in LDI staged combustor[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(6): 15-24 doi: 10.11729/syltlx20220082
Citation: CAI Y Q, YANG X L, WANG K X, et al. Experimental study on the effect of two-stage radial spacing on flow field and atomization in LDI staged combustor[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(6): 15-24 doi: 10.11729/syltlx20220082

Experimental study on the effect of two-stage radial spacing on flow field and atomization in LDI staged combustor

doi: 10.11729/syltlx20220082
  • Received Date: 2022-08-22
  • Accepted Date: 2022-11-01
  • Rev Recd Date: 2022-10-18
  • Available Online: 2023-12-05
  • Publish Date: 2023-12-30
  • The radial spacings of the primary and pilot staged swirler is an important parameter for the lean direct injection combustor. In this paper, the particle image velocimetry technology, Mie scattering technology and particle size measurement technology were used to study the cold flow and spray characteristics under three different radial spacings of the primary and pilot stage. The experimental results show that, under normal temperature and pressure, with the increase of two-stage radial spacing, the central reflux area changes from narrower in front and wider in back to the same width in front and back, the backflow zone between the two stages keeps increasing, the fuel cone angle of the pilot stage is less affected, the main stage jet deflects gradually from the main stage to the pilot stage, and the main fuel crushing effect continues to deteriorate. When the radial spacing of the two-stage is 20 mm, the atomization effect of the main fuel is the best, and the atomization effect of the secondary fuel is also good.
  • loading
  • [1]
    LEFEBVRE A H, BALLAL D R. Gas turbine combustion: alternative fuels and emissions[M]. 3rd ed. Boca Raton: Taylor & Francis, 2010. doi: 10.1201/9781420086058
    [2]
    ANACLETO P, HEITOR M V, MOREIRA A N. The mean and turbulent flowfields in a model RQL gas-turbine combustor[J]. Experiments in Fluids, 1996, 22(2): 153–164. doi: 10.1007/s003480050033
    [3]
    SCHWEITZER J K, ANDERSON J S, SCHEUGENPFLUG H, et al. Validation of propulsion technologies and new engine concepts in a joint technology demonstrator program[R]. Paper ICAS 2006-8.10.1, 2005.
    [4]
    MCKINNEY R, CHEUNG A, SOWA W, et al. The Pratt & Whitney TALON X low emissions combustor: revolutionary results with evolutionary technology[C]//Proc of the 45th AIAA Aerospace Sciences Meeting and Exhibit. 2007: 386. doi: 10.2514/6.2007-386
    [5]
    MONGIA H. Engineering aspects of complex gas turbine combustion mixers part Ⅳ: swirl cup[C]//Proc of the 9th Annual International Energy Conversion Engineering Conference. 2011: 5526. doi: 10.2514/6.2011-5526
    [6]
    YANG Z, BREISACHER K, OYEDIRAN A. Combustion-acoustic instability analysis of LPP combustor. Ⅱ- Longitudinal modes[C]//Proc of the 38th Aerospace Sciences Meeting and Exhibit. 2000: 713. doi: 10.2514/6.2000-713
    [7]
    GUIN C. Characterisation of autoignition and flashback in premixed injection systems[C]//RTO Meeting proceedings. 1999.
    [8]
    DHANUKA S K, TEMME J E, DRISCOLL J F, et al. Vortex-shedding and mixing layer effects on periodic flashback in a lean premixed prevaporized gas turbine combustor[J]. Proceedings of the Combustion Institute, 2009, 32(2): 2901–2908. doi: 10.1016/j.proci.2008.06.155
    [9]
    金如山, 索建秦. 先进燃气轮机燃烧室[M]. 北京: 航空工业出版社, 2016.
    [10]
    CORREA S M. A review of NOx Formation under gas-turbine combustion conditions[J]. Combustion Science and Technology, 1993, 87(1-6): 329–362. doi: 10.1080/00102209208947221
    [11]
    FU Y. Aerodynamics and combustion of axial swirlers[D]. Cincinnati: University of Cincinnati, 2008.
    [12]
    TACINA R. Combustor technology for future aircraft[C]//Proc of the 26th Joint Propulsion Conference. 1990: 2400. doi: 10.2514/6.1990-2400
    [13]
    LAZIK W, DOERR T, BAKE S, et al. Development of lean-burn low-NOx combustion technology at rolls-Royce Deutschland[C]//Proceedings of ASME Turbo Expo 2008: Power for Land, Sea, and Air. 2009: 797−807. doi: 10.1115/GT2008-51115
    [14]
    王于蓝, 范雄杰, 高伟, 等. 航空发动机燃烧室光学可视模型试验件及其流场测量研究进展[J]. 实验流体力学, 2021, 35(1): 18–33. doi: 10.11729/syltlx20190171

    WANG Y L, FAN X J, GAO W, et al. Development of optically accessible gas turbine model combustor and its flow field testing[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(1): 18–33. doi: 10.11729/syltlx20190171
    [15]
    HEATH C M. Characterization of swirl-venturi lean direct injection designs for aviation gas turbine combustion[J]. Journal of Propulsion and Power, 2014, 30(5): 1334–1356. doi: 10.2514/1.B35077
    [16]
    KıRTAS M, PATEL N, SANKARAN V, et al. Large-eddy simulation of a swirl-stabilized, lean direct injection spray combustor[C]//Proceedings of ASME Turbo Expo 2006: Power for Land, Sea, and Air. 2008: 903-914. doi: 10.1115/GT2006-91310
    [17]
    PATEL N, KIRTAŞ M, SANKARAN V, et al. Simulation of spray combustion in a lean-direct injection combustor[J]. Proceedings of the Combustion Institute, 2007, 31(2): 2327–2334. doi: 10.1016/j.proci.2006.07.232
    [18]
    FU Y Q, JENG S M, TACINA R. Characteristics of the swirling flow in a multipoint LDI combustor[C]//Proc of the 45th AIAA Aerospace Sciences Meeting and Exhibit. 2007: 846. doi: 10.2514/6.2007-846
    [19]
    李乐, 索建秦, 于涵, 等. 中心分级多点直喷燃烧室冷态流动特性研究[J]. 推进技术, 2021, 42(6): 1339–1350.

    LI L, SUO J Q, YU H, et al. Non-reaction flow characteristic of concentric staged multi-point direct injection combustor[J]. Journal of Propulsion Technology, 2021, 42(6): 1339–1350.
    [20]
    于涵, 索建秦, 朱鹏飞, 等. 中心分级贫油直喷(LDI)燃烧室流动及污染排放特性研究[J]. 西北工业大学学报, 2018, 36(5): 816–823. doi: 10.3969/j.issn.1000-2758.2018.05.002

    YU H, SUO J Q, ZHU P F, et al. The characteristic of flow field and emissions of a concentric staged lean direct injection (LDI) combustor[J]. Journal of Northwestern Polytechnical University, 2018, 36(5): 816–823. doi: 10.3969/j.issn.1000-2758.2018.05.002
    [21]
    曾青华, 孔文俊, 艾育华, 等. 旋流器结构对贫油直喷燃烧室的性能影响[J]. 航空动力学报, 2014, 29(8): 1775–1781. doi: 10.13224/j.cnki.jasp.2014.08.003

    ZENG Q H, KONG W J, AI Y H, et al. Effects of swirler structure on the performance of lean-direct-injection combustor[J]. Journal of Aerospace Power, 2014, 29(8): 1775–1781. doi: 10.13224/j.cnki.jasp.2014.08.003
    [22]
    张群, 徐华胜, 钟华贵, 等. 多旋流器阵列贫油直喷燃烧室流场的数值模拟[J]. 航空动力学报, 2009, 24(3): 483–487. doi: 10.13224/j.cnki.jasp.2009.03.021

    ZHANG Q, XU H S, ZHONG H G, et al. Numerical simulation of flowfield in a multi-swirler array lean direct injection combustor[J]. Journal of Aerospace Power, 2009, 24(3): 483–487. doi: 10.13224/j.cnki.jasp.2009.03.021
    [23]
    郑洪涛, 唐胜, 刘晓杰. 几何结构对贫油直喷燃烧室流场特性影响的研究[J]. 热科学与技术, 2017, 16(6): 497–502. doi: 10.13738/j.issn.1671-8097.2017.06.011

    ZHENG H T, TANG S, LIU X J. Effect of geometry on flow field characteristics of lean direct injection combustor[J]. Journal of Thermal Science and Technology, 2017, 16(6): 497–502. doi: 10.13738/j.issn.1671-8097.2017.06.011
    [24]
    郑顺, 王成军, 里海洋, 等. 掺混孔位置对中心分级燃烧室性能影响的数值模拟[J]. 邵阳学院学报(自然科学版), 2021, 18(1): 51–59. doi: 10.3969/j.issn.1672-7010.2021.01.007

    ZHENG S, WANG C J, LI H Y, et al. Numerical simulation of effect of mixing hole location on performance of a central staged combustor[J]. Journal of Shaoyang University (Natural Science Edition), 2021, 18(1): 51–59. doi: 10.3969/j.issn.1672-7010.2021.01.007
    [25]
    里海洋, 王成军, 于建桥, 等. 掺混孔排列方式对中心分级燃烧室性能的影响[J]. 滨州学院学报, 2021, 37(4): 5–11. doi: 10.13486/j.cnki.1673-2618.2021.04.001

    LI H Y, WANG C J, YU J Q, et al. Influence of mixing hole arrangement on performance of central staged combustion chamber[J]. Journal of Binzhou University, 2021, 37(4): 5–11. doi: 10.13486/j.cnki.1673-2618.2021.04.001
    [26]
    刘日超, 乐嘉陵, 陈柳君, 等. 双旋流燃烧室两相喷雾试验和数值研究[J]. 实验流体力学, 2017, 31(5): 24–31. doi: 10.11729/syltlx20170093

    LIU R C, LE J L, CHEN L J, et al. Experimental and numerical study on spray atomization in a double-swirler combustor[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(5): 24–31. doi: 10.11729/syltlx20170093
    [27]
    樊艳娜, 毕明树, 周一卉, 等. 旋流作用下突扩燃烧室内冷态流场的 PIV 分析[J]. 实验流体力学, 2015, 29(6): 21–27. doi: 10.11729/syltlx20150056

    FAN Y N, BI M S, ZHOU Y H, et al. Cold-flow analysis on swirl-stabilized dump combustor by PIV[J]. Journal of Experiments in Fluid Mechanics, 2015, 29(6): 21–27. doi: 10.11729/syltlx20150056
    [28]
    童秉纲, 孔祥言, 邓国华. 气体动力学[M]. 2版. 北京: 高等教育出版社, 2012.

    TONG B G, KONG X Y, DENG G H. Gas dynamics[M]. 2nd ed. Beijing: Higher Education Press, 2012.
    [29]
    林宇震, 许全宏, 刘高恩. 燃气轮机燃烧室[M]. 北京: 国防工业出版社, 2008.

    LIN Y Z, XU Q H, LIU G E. Cas turbine combustor[M]. Beijing: National Defense Industry Press, 2008.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(3)

    Article Metrics

    Article views (124) PDF downloads(26) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return