Volume 37 Issue 6
Dec.  2023
Turn off MathJax
Article Contents
CAO C J, ZHU W, WANG J C, et al. Engineering approach of compressor test efficiency correction[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(6): 120-127 doi: 10.11729/syltlx20220031
Citation: CAO C J, ZHU W, WANG J C, et al. Engineering approach of compressor test efficiency correction[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(6): 120-127 doi: 10.11729/syltlx20220031

Engineering approach of compressor test efficiency correction

doi: 10.11729/syltlx20220031
  • Received Date: 2022-04-07
  • Accepted Date: 2022-05-23
  • Rev Recd Date: 2022-05-11
  • Available Online: 2024-01-11
  • Publish Date: 2023-12-30
  • Efficiency is the key parameter for evaluating compressor performance of the aero engine. It is usually acquired by compressor performance tests. Due to the difference in test condition, mechanical configuration, and instrumentation loss, efficiency obtained from compressor rig tests should be corrected for evaluating performance and engine matching in the engineering field. An engineering approach for correcting the compressor efficiency was proposed. The influence factors of the compressor efficiency were classified systematically under different test conditions, and detailed methods of correcting Reynolds number, inlet strut loss, thermo-couple Mach number recovery, air humidity and probe loss were given. Two examples were conducted using this method. The efficiency of a ten-stage compressor component rig test was corrected by 1.85 percent improvement. Besides, in the engine test, the compressor efficiency was corrected by 0.95 percent improvement. This method can be applied in the engineering field of efficiency measurement correction and performance evaluation for core and whole engines.
  • loading
  • [1]
    CUMPSTY N A. Compressor Aerodynamics[M] Malabar: Krieger Publishing Company, 2004.
    [2]
    BURMAN J, JOHANSSON T, LANGER P, et al. Design and performance of an efficient high specific power compressor[R]. ISABE 2009-1265, 2009.
    [3]
    KOFF B. Gas turbine technology evolution - A designer's perspective[C]//Proc of the AIAA International Air and Space Symposium and Exposition: The Next 100 Years. 2003. doi: 10.2514/6.2003-2722
    [4]
    桂幸民, 滕金芳, 刘宝杰. 航空压气机气动热力学理论与应用[M]. 上海: 上海交通大学出版社, 2014.

    GUI X M, TENG J F, LIU B J. Compressor aerothermodynamics and its applications in aircraftengines[M]. Shanghai: Shanghai Jiao Tong University Press, 2014.
    [5]
    刘宝杰, 庄昕伟, 安广丰, 等. 轴流压气机低速试验效率测量分析[J]. 工程热物理学报, 2020, 41(10): 2425–2430.

    LIU B J, ZHUANG X W, AN G F, et al. Efficiency measurement analysis for low-speed axial compressor[J]. Journal of Engineering Thermophysics, 2020, 41(10): 2425–2430.
    [6]
    任铭林, 向宏辉. 有关轴流压气机效率问题的探讨[J]. 燃气涡轮试验与研究, 2009, 22(4): 9–14. doi: 10.3969/j.issn.1672-2620.2009.04.002

    REN M L, XIANG H H. Exploration of efficiency in axial compressor[J]. Gas Turbine Experiment and Research, 2009, 22(4): 9–14. doi: 10.3969/j.issn.1672-2620.2009.04.002
    [7]
    崔济亚. 压气机效率的正确变比热计算[J]. 推进技术, 1995, 16(2): 1–3.

    CUI J Y. Correct calculation of varying specific heat compressor efficiency[J]. Journal of Propulsion Technology, 1995, 16(2): 1–3.
    [8]
    WALTHER R, FRISCHBIER J, SELMEIER R. Aeromechanical design of advanced engine compressors[R]. ISABE2001-1241, 2001.
    [9]
    BROICHHAUSEN K D, ZIEGLER K U. Supersonic and transonic compressors: past, status and technology trends[R]. ASME GT2005-69067, 2005. doi: 10.1115/GT2005-69067
    [10]
    BRUN K, KURZ R. Measurement uncertainties encountered during gas turbine driven compressor field testing[J]. Journal of Engineering for Gas Turbines and Power, 2001, 123(1): 62–69. doi: 10.1115/1.1340628
    [11]
    BETTOCCHI R, PINELLI M, SPINA P R. A multi-stage compressor test facility: uncertainty analysis and preliminary test results [R]. ASME GT2003-38397, 2003. doi: 10.1115/GT2003-38397
    [12]
    WASSELL A B. Reynolds number effects in axial compressors[J]. Journal of Engineering for Gas Turbines and Power, 1968, 90(2): 149–156.
    [13]
    PELZ P F, STONJEK S S. The influence of Reynolds number and roughness on the efficiency of axial and centrifugal fans—A physically based scaling method[J]. Journal of Engineering for Gas Turbines and Power, 2013, 135(5): 052601–052609. doi: 10.1115/1.4022991
    [14]
    刘一彤, 宫武旗, 王琦, 等. 压气机级模化换算中雷诺数与粗糙度修正研究[J]. 工程热物理学报, 2021, 42(7): 1752–1759.

    LIU Y T, GONG W Q, WANG Q, et al. Study on Reynolds number and roughness correction in compressor stage geometric scaling[J]. Journal of Engineering Thermophysics, 2021, 42(7): 1752–1759.
    [15]
    JIN D H, LIU X W, ZHAO W G, et al. Optimization of endwall contouring in axial compressor S-shaped ducts[J]. Chinese Journal of Aeronautics, 2015, 28(4): 1076–1086. doi: 10.1016/j.cja.2015.06.011
    [16]
    SHARMA M, BALONI B D. Design optimization of a compressor transition S-shaped duct using a teaching–learning-based optimization algorithm[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2019, 41(12): 1–18. doi: 10.1007/s40430-019-2072-5
    [17]
    李斌, 吴亚东, 滕金芳, 等. 压气机中介机匣几何结构的试验验证[J]. 航空动力学报, 2013, 28(10): 2326–2331.

    LI B, WU Y D, TENG J F, et al. Experimental validation of geometry of compressor intermediate casing[J]. Journal of Aerospace Power, 2013, 28(10): 2326–2331.
    [18]
    辛亚楠, 李家军, 韩阳, 等. 大径向落差长度比中介机匣气动特性研究[J]. 推进技术, 2017, 38(4): 808–814.

    XIN Y N, LI J J, HAN Y, et al. Numerical study on aerodynamic characteristics of a large radius change to length ratio intermediate duct[J]. Journal of Propulsion Technology, 2017, 38(4): 808–814.
    [19]
    吴思宇, 朱品武, 汪作心, 等. 过渡段部分对某高压压气机性能影响研究[J]. 热能动力工程, 2021, 36(9): 42–50.

    WU S Y, ZHU P W, WANG Z X, et al. Research on the effect of transition section on performance of high pressure compressor[J]. Journal of Engineering for Thermal Energy and Power, 2021, 36(9): 42–50.
    [20]
    DAY I, WILLIAMS J, FREEMAN C. Rain ingestion in axial flow compressors at part speed[J]. Journal of Turbomachinery, 2008, 130(1):011024-1-10-0 . doi: 10.1115/1.2366511
    [21]
    NIKOLAIDIS T, PILIDIS P. The effect of water ingestion on an axial flow compressor performance[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2014, 228(3): 411–423. doi: 10.1177/0954410012474421
    [22]
    BERDANIER R A, SMITH N R, FABIAN J C, et al. Humidity effects on experimental compressor performance—corrected conditions for real gases[J]. Journal of Turbomachinery, 2015, 137(3). doi: 10.1115/1.4028356
    [23]
    刘波, 曹志鹏, 高嵩, 等. 来流含水对航空发动机风扇/压气机特性的影响[J]. 航空动力学报, 2005, 20(6): 1041–1047. doi: 10.3969/j.issn.1000-8055.2005.06.025

    LIU B, CAO Z P, GAO S, et al. Influence of inlet water ingestion on aero-engine fan-compressor performance[J]. Journal of Aerospace Power, 2005, 20(6): 1041–1047. doi: 10.3969/j.issn.1000-8055.2005.06.025
    [24]
    ZHENG Q, SUN Y F, LI S Y, et al. Thermodynamic analyses of wet compression process in the compressor of gas turbine [R]. ASME GT-2002-30590, 2009.
    [25]
    杨璐, 郑群, 张海, 等. 轴流压气机吞水后的性能变化研究[J]. 推进技术, 2017, 38(7): 1499–1506.

    YANG L, ZHENG Q, ZHANG H, et al. Study on performance changes of axial flow compressor after water ingestion[J]. Journal of Propulsion Technology, 2017, 38(7): 1499–1506.
    [26]
    安利平, 王掩刚, 朱自环, 等. 跨声速压气机湿压缩性能及流动特性研究[J]. 航空学报, 2022, 43: 126024.

    AN L P, WANG Y G, ZHU Z H, et al. Influence of wet compression on aerodynamic performance and stall boundary of transonic compressor[J]. Acta aeronautics et astronautica sinica, 2022, 43: 126024.
    [27]
    LOU F Y, FABIAN J, KEY N L. The effect of gas models on compressor efficiency including uncertainty[J]. Journal of Engineering for Gas Turbines and Power, 2014, 136(1): 012601–012609. doi: 10.1115/1.4025317
    [28]
    马宏伟, 项乐. 探针支杆对压气机转子性能及流场影响的数值模拟研究[J]. 推进技术, 2016, 37(12): 2288–2295.

    MA H W, XIANG L. Numerical investigation of effects of probe support on performance and flow field of compressor rotor[J]. Journal of Propulsion Technology, 2016, 37(12): 2288–2295.
    [29]
    MA H W, JIN C, ZHAO L P, et al. Effects of airfoil-probe tubes on the flow field of a compressor cascade[J]. Journal of Thermal Science, 2017, 26(4): 321–330. doi: 10.1007/s11630-017-0945-4
    [30]
    杨荣菲, 赵建通, 向宏辉, 等. 进口探针支杆对1.5级压气机气动性能的影响[J]. 推进技术, 2017, 38(5): 1038–1046.

    YANG R F, ZHAO J T, XIANG H H, et al. Effects of inlet probe support on aerodynamic performance of 1.5-stage compressor[J]. Journal of Propulsion Technology, 2017, 38(5): 1038–1046.
    [31]
    《航空发动机设计手册》总编委会. 航空发动机设计手册(第8分册): 压气机[M]. 北京: 航空工业出版社, 2006.
    [32]
    陈云永, 马昌友, 孙震宇, 等. 引气对高压压气机效率评价影响分析[J]. 实验流体力学, 2021, 35(2): 43–49. doi: 10.11729/syltlx20200097

    CHEN Y Y, MA C Y, SUN Z Y, et al. Effect of bleed on efficiency evaluation of high pressure compressor[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(2): 43–49. doi: 10.11729/syltlx20200097
    [33]
    赵俭, 杨永军. 气流温度测量技术[M]. 北京: 中国质检出版社, 2017.
    [34]
    童钧耕. 工程热力学[M]. 4版. 北京: 高等教育出版社, 2007.
    [35]
    《高效节能发动机文集》编委会. 高效节能发动机文集 第3分册: 风扇、压气机设计与试验[M]. 北京: 航空工业出版社, 1991.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(5)

    Article Metrics

    Article views (77) PDF downloads(11) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return