Volume 36 Issue 4
Sep.  2022
Turn off MathJax
Article Contents
CHEN L,FENG J. Thermophysical properties research progress of ferroelastic RETaO4 ceramics[J]. Journal of Experiments in Fluid Mechanics, 2022,36(4):56-76. doi: 10.11729/syltlx20220020
Citation: CHEN L,FENG J. Thermophysical properties research progress of ferroelastic RETaO4 ceramics[J]. Journal of Experiments in Fluid Mechanics, 2022,36(4):56-76. doi: 10.11729/syltlx20220020

Thermophysical properties research progress of ferroelastic RETaO4 ceramics

doi: 10.11729/syltlx20220020
  • Received Date: 2022-03-07
  • Accepted Date: 2022-04-28
  • Rev Recd Date: 2022-04-25
  • Available Online: 2022-08-23
  • Publish Date: 2022-09-02
  • Working temperature is essential for the gas efficiency and energy conversion efficiency of multifarious aero engines, gas turbines, and hypersonic vehicle engines. Thermal barrier coatings (TBCs) are used in the high-temperature alloy components of aforementioned machines to provide thermal insulation and increase their working temperature. The most applied TBC is yttria stabilized zirconia (YSZ), but it can no longer meet the demands of current industry due to its high thermal conductivity, mismatching thermal expansion coefficients (TECs), and insufficient working temperature. It is urgent for scholars to investigate the next-generation TBC materials having low thermal conductivity, long lifetime, and high working temperature. The low fracture toughness, low TECs, weak high-temperature phase stability, and other weaknesses inhibit RE2Zr2O7, REPO4, RE2SiO5, RE2Ce2O7, and RE–Al–O oxides from being applied as TBCs. Ferroelastic rare earth tantalates (RETaO4) are considered as the next-generation TBCs with ultra-high working temperature based on their unique ferroelastic toughening, low thermal conductivity, high TECs, and low Young’s modulus. This paper reviews the thermophysical properties of RETaO4 ceramics, including their crystal structures, microstructures, and mechanical/thermal properties (hardness, acoustic velocity, modulus, thermal conductivity, TECs, phase stability, and so on). It is believed that RETaO4 ceramics are candidate TBCs with high working temperature, and this paper provides scholars with some suggestions and future investigation directions on these series ceramics.
  • loading
  • [1]
    CLARKE D R,OECHSNER M,PADTURE N P. Thermal-barrier coatings for more efficient gas-turbine engines[J]. MRS Bulletin,2012,37(10):891-898. doi: 10.1557/mrs.2012.232
    [2]
    PADTURE N P,GELL M,JORDAN E H. Thermal barrier coatings for gas-turbine engine applications[J]. Science,2002,296(5566):280-284. doi: 10.1126/science.1068609
    [3]
    LIU B,LIU Y C,ZHU C H,et al. Advances on strategies for searching for next generation thermal barrier coating materials[J]. Journal of Materials Science & Technology,2019,35(5):833-851. doi: 10.1016/j.jmst.2018.11.016
    [4]
    江和甫. 燃气涡轮发动机的发展与制造技术[J]. 航空制造技术,2007,5:36-39. doi: 10.16080/j.issn1671-833x.2007.05.003
    [5]
    CARON P,KHAN T. Evolution of Ni-based superalloys for single crystal gas turbine blade applications[J]. Aerospace Science and Technology,1999,3(8):513-523. doi: 10.1016/S1270-9638(99)00108-X
    [6]
    曹学强. 热障涂层材料[M]. 北京: 科学出版社, 2007.
    [7]
    LEYENS C,SCHULZ U,FRITSCHER K,et al. Contemporary materials issues for advanced EB-PVD thermal barrier coating systems[J]. International Journal of Materials Research,2022,92(7):762-772. doi: 10.1515/ijmr-2001-0142
    [8]
    KAYSSER W A,BARTSCH M,KRELL T,et al. Ceramic thermal barriers for demanding turbine applications[J]. Ceramic Forum International,2000,77(2000):32-36.
    [9]
    PAN W,PHILLPOT S R,WAN C L,et al. Low thermal conductivity oxides[J]. MRS Bulletin,2012,37(10):917-922. doi: 10.1557/mrs.2012.234
    [10]
    WANG J,CHONG X Y,ZHOU R,et al. Microstructure and thermal properties of RETaO4(RE = Nd, Eu, Gd, Dy, Er, Yb, Lu) as promising thermal barrier coating materials[J]. Scripta Materialia,2017,126:24-28. doi: 10.1016/j.scriptamat.2016.08.019
    [11]
    CLARKE D R,LEVI C G. Materials design for the next generation thermal barrier coatings[J]. Annual Review of Materials Research,2003,33:383-417. doi: 10.1146/annurev.matsci.33.011403.113718
    [12]
    SCHLICHTING K W,PADTURE N P,KLEMENS P G. Thermal conductivity of dense and porous yttria-stabilized zirconia[J]. Journal of Materials Science,2001,36:3003-3010. doi: 10.1023/A:1017970924312
    [13]
    MERCER C,WILLIAMS J R,CLARKE D R,et al. On a ferroelastic mechanism governing the toughness of meta-stable tetragonal-prime(t') yttria-stabilized zirconia[J]. Proceedings of the Royal Society A:Mathematical, Physical and Engineering Sciences,2007,463(2081):1393-1408. doi: 10.1098/rspa.2007.1829
    [14]
    SCHELLING P K,PHILLPOT S R,WOLF D. Mechanism of the cubic-to-tetragonal phase transition in zirconia and yttria-stabilized zirconia by molecular-dynamics simulation[J]. Journal of the American Ceramic Society,2001,84(7):1609-1619. doi: 10.1111/j.1151-2916.2001.tb00885.x
    [15]
    RAGHAVAN S,WANG H,PORTER W D,et al. Thermal properties of zirconia co-doped with trivalent and pentava-lent oxides[J]. Acta Materialia,2001,49(1):169-179. doi: 10.1016/S1359-6454(00)00295-0
    [16]
    RAHAMAN M N,GROSS J R,DUTTON R E,et al. Phase stability, sintering, and thermal conductivity of plasma-sprayed ZrO2-Gd2O3 compositions for potential thermal barrier coating applications[J]. Acta Materialia,2006,54(6):1615-1621. doi: 10.1016/j.actamat.2005.11.033
    [17]
    DU A B,WAN C L,QU Z X,et al. Thermal conductivity of monazite-type REPO4(RE=La, Ce, Nd, Sm, Eu, Gd)[J]. Journal of the American Ceramic Society,2009,92(11):2687-2692. doi: 10.1111/j.1551-2916.2009.03244.x
    [18]
    CAO X,VASSEN R,FISCHER W,et al. Lanthanum–cerium Oxide as a thermal barrier-coating material for high-temperature applications[J]. Advanced Materials,2003,15(17):1438-1442. doi: 10.1002/adma.200304132
    [19]
    WANG F,GUO L,WANG C M,et al. Calcium-magnesium-alumina-silicate (CMAS) resistance characteristics of LnPO4(Ln = Nd, Sm, Gd) thermal barrier oxides[J]. Journal of the European Ceramic Society,2017,37(1):289-296. doi: 10.1016/j.jeurceramsoc.2016.08.013
    [20]
    CHEN L,LI BH,GUO J,et al. High-entropy perovskite RETa3O9 ceramics for high-temperature environmental/thermal barrier coatings[J]. Journal of Advanced Ceramics,2022,11(4):556-569. doi: 10.1007/s40145-021-0556-0
    [21]
    GOK M G,GOLLER G. Microstructural characterization of GZ/CYSZ thermal barrier coatings after thermal shock and CMAS+hot corrosion test[J]. Journal of the European Ceramic Society,2017,37(6):2501-2508. doi: 10.1016/j.jeurceramsoc.2017.02.004
    [22]
    SONG W J,YANG S J,FUKUMOTO M,et al. Impact interaction of in-flight high-energy molten volcanic ash droplets with jet engines[J]. Acta Materialia,2019,171:119-131. doi: 10.1016/j.actamat.2019.04.011
    [23]
    SONG W J,LAVALLÉE Y,HESS K U,et al. Volcanic ash melting under conditions relevant to ash turbine interactions[J]. Nature Communications,2016,7:10795. doi: 10.1038/ncomms10795
    [24]
    CHEN L,SONG P,FENG J. Influence of ZrO2 alloying effect on the thermophysical properties of fluorite-type Eu3TaO7 ceramics[J]. Scripta Materialia,2018,152:117-121. doi: 10.1016/j.scriptamat.2018.03.042
    [25]
    CHEN L,WU P,SONG P,et al. Potential thermal barrier coating materials: RE3NbO7(RE=La, Nd, Sm, Eu, Gd, Dy) ceramics[J]. Journal of the American Ceramic Society,2018,101(10):4503-4508. doi: 10.1111/jace.15798
    [26]
    CHEN L,JIANG Y H,CHONG X Y,et al. Synthesis and thermophysical properties of RETa3O9(RE = Ce, Nd, Sm, Eu, Gd, Dy, Er) as promising thermal barrier coatings[J]. Journal of the American Ceramic Society,2018,101(3):1266-1278. doi: 10.1111/jace.15268
    [27]
    FENG J,XIAO B,ZHOU R,et al. Anisotropic elastic and thermal properties of the double perovskite slab-rock salt layer Ln2SrAl2O7(Ln = La, Nd, Sm, Eu, Gd or Dy)natural superlattice structure[J]. Acta Materialia,2012,60(8):3380-3392. doi: 10.1016/j.actamat.2012.03.004
    [28]
    QU Z X,WAN C L,PAN W. Thermophysical properties of rare-earth stannates: effect of pyrochlore structure[J]. Acta Materialia,2012,60(6-7):2939-2949. doi: 10.1016/j.actamat.2012.01.057
    [29]
    WAN C L,QU Z X,HE Y,et al. Ultralow thermal conductivity in highly anion-defective aluminates[J]. Physical Review Letters,2008,101(8):085901. doi: 10.1103/PhysRevLett.101.085901
    [30]
    ZHAO M,PAN W,LI T J,et al. Oxygen-vacancy-mediated microstructure and thermophysical properties in Zr3Ln4O12 for high-temperature applications[J]. Journal of the American Ceramic Society,2019,102(4):1961-1970. doi: 10.1111/jace.16052
    [31]
    HU W P,LEI Y M,ZHANG J,et al. Mechanical and thermal properties of RE4Hf3O12(RE=Ho, Er, Tm) ceramics with defect fluorite structure[J]. Journal of Materials Science & Technology,2019,35(9):2064-2069. doi: 10.1016/j.jmst.2019.04.025
    [32]
    XIANG H M,FENG Z H,ZHOU Y C. Theoretical investigations on mechanical anisotropy and intrinsic ther-mal conductivity of YbAlO3[J]. Journal of the European Ceramic Society,2015,35(5):1549-1557. doi: 10.1016/j.jeurceramsoc.2014.12.008
    [33]
    YANG J,QIAN X,PAN W,et al. Diffused lattice vibration and ultralow thermal conductivity in the binary Ln-Nb-O oxide system[J]. Advanced Materials,2019,31(24):1808222. doi: 10.1002/adma.201808222
    [34]
    RAGHAVAN S,WANG H,DINWIDDIE R B,et al. Ta2O5/Nb2O5 and Y2O3 Co-doped Zirconias for thermal barrier coatings[J]. Journal of the American Ceramic Society,2004,87(3):431-437. doi: 10.1111/j.1551-2916.2004.00431.x
    [35]
    WINTER M R,CLARKE D R. Thermal conductivity of yttria-stabilized zirconia-hafnia solid solutions[J]. Acta Materialia,2006,54(19):5051-5059. doi: 10.1016/j.actamat.2006.06.038
    [36]
    REBOLLO N R,FABRICHNAYA O,LEVI C G. Phase stability of Y + Gd co-doped zirconia[J]. Zeitschrift Für Metallkunde,2003,94(3):163-170. doi: 10.3139/146.030163
    [37]
    WU P,ZHOU Y X,WU F S,et al. Theoretical and experimental investigations of mechanical properties for polymorphous YTaO4 ceramics[J]. Journal of the American Ceramic Society,2019,102(12):7656-7664. doi: 10.1111/jace.16629
    [38]
    WANG J,ZHOU Y,CHONG X Y,et al. Microstructure and thermal properties of a promising thermal barrier coating: YTaO4[J]. Ceramics International,2016,42(12):13876-13881. doi: 10.1016/j.ceramint.2016.05.194
    [39]
    CHEN L,WU P,FENG J. Optimization thermophysical properties of TiO2 alloying Sm3TaO7 ceramics as promising thermal barrier coatings[J]. International Journal of Applied Ceramic Technology,2019,16(1):230-242. doi: 10.1111/ijac.13079
    [40]
    CHEN L,HU M Y,WU P,et al. Thermal expansion performance and intrinsic lattice thermal conductivity of ferroelastic RETaO4 ceramics[J]. Journal of the American Ceramic Society,2019,102(8):4809-4821. doi: 10.1111/jace.16328
    [41]
    WU P,HU M Y,CHONG X Y,et al. The glass-like thermal conductivity in ZrO2-Dy3TaO7 ceramic for promising ther-mal barrier coating application[J]. Applied Physics Letters,2018,112(13):131903. doi: 10.1063/1.5022610
    [42]
    KROGSTAD J A,LEPPLE M,LEVI C G. Opportunities for improved TBC durability in the CeO2–TiO2–ZrO2 system[J]. Surface and Coatings Technology,2013,221:44-52. doi: 10.1016/j.surfcoat.2013.01.026
    [43]
    SODEOKA S,SUZUKI M,UENO K,et al. Thermal and mechanical properties of ZrO2–CeO2 plasma-sprayed coatings[J]. Journal of Thermal Spray Technology,1997,6(3):361-367. doi: 10.1007/s11666-997-0071-z
    [44]
    ZHAO M,REN X R,PAN W. Low thermal conductivity of SnO2–doped Y2O3–stabilized ZrO2:effect of the lattice tetragonal distortion[J]. Journal of the American Ceramic Society,2015,98(1):229-235. doi: 10.1111/jace.13313
    [45]
    SUN M C,SUI Y Q,GAO K,et al. Theoretical investigation of mechanical and thermal properties of RE2Hf2O7(RE=La, Ce, Pr, Nd, Pm and Sm) pyrochlore oxides[J]. Ceramics International,2019,45(9):12101-12105. doi: 10.1016/j.ceramint.2019.03.108
    [46]
    CHEN L,WU P,SONG P,et al. Synthesis, crystal struc-ture and thermophysical properties of (La1–xEux)3TaO7 ceramics[J]. Ceramics International,2018,44(14):16273-16281. doi: 10.1016/j.ceramint.2018.06.021
    [47]
    陈琳,冯晶. 稀土钽酸盐RE3TaO7和RETa3O9陶瓷热–力学性质研究进展[J]. 现代技术陶瓷,2019,40(6):367-397. doi: 10.16253/j.cnki.37-1226/tq.2019.06.001

    CHEN L,FENG J. Research progress of thermo-mechanical properties of rare earth tantalates RE3TaO7 and RETa3O9 ceramics[J]. Advanced Ceramics,2019,40(6):367-397. doi: 10.16253/j.cnki.37-1226/tq.2019.06.001
    [48]
    CHEN L,HU M Y,WU F S,et al. Thermo-mechanical properties of fluorite Yb3TaO7 and Yb3NbO7 ceramics with glass-like thermal conductivity[J]. Journal of Alloys and Compounds,2019,788:1231-1239. doi: 10.1016/j.jallcom.2019.02.317
    [49]
    WU F S,WU P,CHEN L,et al. Structure and thermal properties of Al2O3–doped Gd3TaO7 as potential thermal barrier coating[J]. Journal of the European Ceramic Society,2019,39(6):2210-2214. doi: 10.1016/j.jeurceramsoc.2019.02.002
    [50]
    XUE Z L,MA Y,GUO H B. The influence of Gd doping on thermophysical properties, elasticity modulus and phase stability of garnet-type (Y1-xGdx)3Al5O12 ceramics[J]. Journal of the European Ceramic Society,2017,37(13):4171-4177. doi: 10.1016/j.jeurceramsoc.2017.05.033
    [51]
    MA W,MACK D E,VAßEN R,et al. Perovskite-type strontium zirconate as a new material for thermal barrier coatings[J]. Journal of the American Ceramic Society,2008,91(8):2630-2635. doi: 10.1111/j.1551-2916.2008.02472.x
    [52]
    TIAN Z L,SUN L C,WANG J M,et al. Theoretical prediction and experimental determination of the low lattice thermal conductivity of Lu2SiO5[J]. Journal of the European Ceramic Society,2015,35(6):1923-1932. doi: 10.1016/j.jeurceramsoc.2015.01.001
    [53]
    LIMARGA A M,SHIAN S,LECKIE R M,et al. Thermal conductivity of single- and multi-phase compositions in the ZrO2–Y2O3–Ta2O5 system[J]. Journal of the European Ceramic Society,2014,34(12):3085-3094. doi: 10.1016/j.jeurceramsoc.2014.03.013
    [54]
    SHIAN S,SARIN P,GURAK M,et al. The tetragonal-monoclinic, ferroelastic transformation in yttrium tantalate and effect of zirconia alloying[J]. Acta Materialia,2014,69:196-202. doi: 10.1016/j.actamat.2014.01.054
    [55]
    FENG J,SHIAN S,XIAO B,et al. First-principles calculations of the high-temperature phase transformation in yttrium tantalate[J]. Physical Review B,2014,90(9):094102. doi: 10.1103/physrevb.90.094102
    [56]
    PITEK F M,LEVI C G. Opportunities for TBCs in the ZrO2–YO1.5–TaO2.5 system[J]. Surface and Coatings Technology,2007,201(12):6044-6050. doi: 10.1016/j.surfcoat.2006.11.011
    [57]
    MACAULEY C A,FERNANDEZ A N,LEVI C G. Phase equilibria in the ZrO2–YO1.5–TaO2.5 system at 1500 ℃[J]. Journal of the European Ceramic Society,2017,37(15):4888-4901. doi: 10.1016/j.jeurceramsoc.2017.06.031
    [58]
    FLAMANT Q,GURAK M,CLARKE D R. The effect of zirconia substitution on the high-temperature transforma-tion of the monoclinic-prime phase in yttrium tantalate[J]. Journal of the European Ceramic Society,2018,38(11):3925-3931. doi: 10.1016/j.jeurceramsoc.2018.04.002
    [59]
    CHEN L,HU M Y,GUO J,et al. Mechanical and thermal properties of RETaO4(RE = Yb, Lu, Sc) ceramics with monoclinic-prime phase[J]. Journal of Materials Science & Technology,2020,52:20-28. doi: 10.1016/j.jmst.2020.02.051
    [60]
    WU P,CHONG X Y,WU F S,et al. Investigation of the thermophysical properties of (Y1-xYbx)TaO4 ceramics[J]. Journal of the European Ceramic Society,2020,40(8):3111-3121. doi: 10.1016/j.jeurceramsoc.2020.03.007
    [61]
    ANDERSON O L. A simplified method for calculating the Debye temperature from elastic constants[J]. Journal of Physics and Chemistry of Solids,1963,24(7):909-917. doi: 10.1016/0022-3697(63)90067-2
    [62]
    SLACK G A. Nonmetallic crystals with high thermal conductivity[J]. Journal of Physics and Chemistry of Solids,1973,34(2):321-335. doi: 10.1016/0022-3697(73)90092-9
    [63]
    CHEN L,WANG Y T,HU M Y,et al. Achieved limit thermal conductivity and enhancements of mechanical properties in fluorite RE3NbO7 via entropy engineering[J]. Applied Physics Letters,2021,118(7):071905. doi: 10.1063/5.0037373
    [64]
    ZHOU Z P,YUAN W Z,ZHU W,et al. In situ measurements of the high-temperature mechanical properties of ZrO2–doped YTaO4 ceramic by three-point bending combined with a digital image correlation method[J]. Ceramics International,2022,48(5):7159-7167. doi: 10.1016/j.ceramint.2021.11.277
    [65]
    朱嘉桐,楼志豪,张萍,等. 稀土钽酸盐(RETaO4)高熵陶瓷的制备与热学性能研究[J]. 无机材料学报,2021,36(4):411-417. doi: 10.15541/jim20200426

    ZHU J T,LOU Z H,ZHANG P,et al. Preparation and thermal properties of rare earth tantalates(RETaO4) high-entropy ceramics[J]. Journal of Inorganic Materials,2021,36(4):411-417. doi: 10.15541/jim20200426
    [66]
    BRAUN J L,ROST C M,LIM M,et al. Charge-induced disorder controls the thermal conductivity of entropy-stabilized oxides[J]. Advanced Materials,2018,30(51):1805004. doi: 10.1002/adma.201805004
    [67]
    ZHAO Z F,CHEN H,XIANG H M,et al. High entropy defective fluorite structured rare-earth niobates and tantalates for thermal barrier applications[J]. Journal of Advanced Ceramics,2020,9(3):303-311. doi: 10.1007/s40145-020-0368-7
    [68]
    OSES C,TOHER C,CURTAROLO S. High-entropy ceramics[J]. Nature Reviews Materials,2020,5(4):295-309. doi: 10.1038/s41578-019-0170-8
    [69]
    WU P,CHONG X Y,FENG J. Effect of Al3+ doping on mechanical and thermal properties of DyTaO4 as promising thermal barrier coating application[J]. Journal of the American Ceramic Society,2018,101(5):1818-1823. doi: 10.1111/jace.15382
    [70]
    WU P,HU M Y,CHEN L,et al. The effect of ZrO2 alloying on the microstructures and thermal properties of DyTaO4 for high-temperature application[J]. Journal of the American Ceramic Society,2019,102(3):889-895. doi: 10.1111/jace.16118
    [71]
    WU P,HU M Y,CHEN L,et al. Investigation on microstructures and thermo-physical properties of ferroelastic (Y1−xDyx)TaO4 ceramics[J]. Materialia,2018,4:478-486. doi: 10.1016/j.mtla.2018.11.006
    [72]
    ZHENG Q,WU F S,CHEN L,et al. Thermophysical and mechanical properties of YTaO4 ceramic by niobium substitution tantalum[J]. Materials Letters,2020,268:127586. doi: 10.1016/j.matlet.2020.127586
    [73]
    YANG K L,CHEN L,WU F S,et al. Thermophysical properties of Yb(TaxNb1−x)O4 ceramics with different crystal structures[J]. Ceramics International,2020,46(18):28451-28458. doi: 10.1016/j.ceramint.2020.08.002
    [74]
    GRIMVALL G. Thermophysical properties of materials[M]. Netherlands, North Holland, Amsterdam: Elsevier B. V. , 1999. doi: 10.1016/B978-0-444-82794-4.X5000-1
    [75]
    DUGDALE J S,MacDONALD D K C. Lattice thermal conductivity[J]. Physical Review,1955,98(6):1751-1752. doi: 10.1103/physrev.98.1751
    [76]
    LAWSON A W. On the high temperature heat conductivity of insulators[J]. Journal of Physics and Chemistry of Solids,1957,3(1-2):155-156. doi: 10.1016/0022-3697(57)90064-1
    [77]
    ZHANG P,FENG Y J,LI Y,et al. Thermal and mechanical properties of ferroelastic RENbO4(RE = Nd, Sm, Gd, Dy, Er, Yb) for thermal barrier coatings[J]. Scripta Materialia,2020,180:51-56. doi: 10.1016/j.scriptamat.2020.01.026
    [78]
    WU F S,WU P,ZHOU Y X,et al. The thermo-mechanical properties and ferroelastic phase transition of RENbO4(RE = Y, La, Nd, Sm, Gd, Dy, Yb) ceramics[J]. Journal of the American Ceramic Society,2020,103(4):2727-2740. doi: 10.1111/jace.16926
    [79]
    TIAN Z L,ZHENG L Y,WANG J M,et al. Theoretical and experimental determination of the major thermo-mechanical properties of RE2SiO5(RE = Tb, Dy, Ho, Er, Tm, Yb, Lu, and Y) for environmental and thermal barrier coating applications[J]. Journal of the European Ceramic Society,2016,36(1):189-202. doi: 10.1016/j.jeurceramsoc.2015.09.013
    [80]
    CHEN L,FENG J. Influence of HfO2 alloying effect on microstructure and thermal conductivity of HoTaO4 ceramics[J]. Journal of Advanced Ceramics,2019,8(4):537-544. doi: 10.1007/s40145-019-0336-2
    [81]
    ZHU Y K,GUO J,CHEN L,et al. Simultaneous enhance-ment of thermoelectric performance and mechanical properties in Bi2Te3 via Ru compositing[J]. Chemical Engineering Journal,2021,407:126407. doi: 10.1016/j.cej.2020.126407
    [82]
    CHEN L,GUO J,ZHU Y K,et al. Features of crystal structures and thermo-mechanical properties of weberites RE3NbO7(RE=La, Nd, Sm, Eu, Gd) ceramics[J]. Journal of the American Ceramic Society,2021,104(1):404-412. doi: 10.1111/jace.17437
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(19)  / Tables(4)

    Article Metrics

    Article views (783) PDF downloads(94) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return