Volume 36 Issue 3
Jul.  2022
Turn off MathJax
Article Contents
YU B Y,LYU H Q,ZHOU Y,et al. Predictive analysis of flow control in high-speed complex flow field based on machine learning[J]. Journal of Experiments in Fluid Mechanics, 2022,36(3):44-54. doi: 10.11729/syltlx20210168
Citation: YU B Y,LYU H Q,ZHOU Y,et al. Predictive analysis of flow control in high-speed complex flow field based on machine learning[J]. Journal of Experiments in Fluid Mechanics, 2022,36(3):44-54. doi: 10.11729/syltlx20210168

Predictive analysis of flow control in high-speed complex flow field based on machine learning

doi: 10.11729/syltlx20210168
  • Received Date: 2021-10-29
  • Accepted Date: 2022-02-11
  • Rev Recd Date: 2022-02-09
  • Available Online: 2022-07-04
  • Publish Date: 2022-07-04
  • The flow control actuator is the core of the active flow control technology. The design level and performance of actuator directly determine the application direction and effect of active flow control. In order to obtain the action law of the flow control actuator, a large number of experiments are needed to study the influence of excitation parameters on control effect parameters, and the experimental cost is large. In this paper, the experimental data of jet shock control in reverse plasma synthesis are used, and the Gaussian process regression model in machine learning is used to obtain the mapping law from the actuator parameters (head cone diameter, cavity volume, discharge capacitance and outlet diameter) to the control effect parameters (maximum out of body distance). We compare the prediction effects of Gaussian process regression under various kernel functions, and analyze the influence of actuator parameters on control effect parameters by using the characteristic importance analysis method. The results show that for this small sample problem, Gaussian process regression with the quadratic polynomial kernel function Poly2 obtains the highest accuracy; in characteristic importance analysis, the head cone diameter has the greatest influence on the maximum separation distance, followed by discharge capacitance and cavity volume. The influence of these two parameters is similar, and the influence of the outlet diameter is the least. The work of this paper can provide some guidance for the setting of various parameters of the actuator in the flow control experiment of the high-speed complex flow field.
  • loading
  • [1]
    BEN-GIDA H,STEFANINI J,STALNOV O,et al. Application of passive flow control techniques to attenuate the unsteady near wake of airborne turrets in subsonic flow[J]. Aerospace Science and Technology,2021,119:107129. doi: 10.1016/J.AST.2021.107129
    [2]
    战培国,程娅红,赵昕. 主动流动控制技术研究[J]. 航空科学技术,2010,21(5):2-6. doi: 10.3969/j.issn.1007-5453.2010.05.001

    ZHAN P G,CHENG Y H,ZHAO X. A review of active flow control technology[J]. Aeronautical Science and Technology,2010,21(5):2-6. doi: 10.3969/j.issn.1007-5453.2010.05.001
    [3]
    王林,罗振兵,夏智勋,等. 高速流场主动流动控制激励器研究进展[J]. 中国科学(技术科学),2012,42(10):1103-1119. doi: 10.1360/ze2012-42-10-1103

    WANG L,LUO Z B,XIA Z X,et al. Review of actuators for high speed active flow control[J]. SCIENTIA SINICA Technologica,2012,42(10):1103-1119. doi: 10.1360/ze2012-42-10-1103
    [4]
    BISHOP C . Pattern recognition and machine learning[M]. Germany: Springer, 2006.
    [5]
    MINELLI G,DONG T,NOACK B R,et al. Upstream actuation for bluff-body wake control driven by a genetically inspired optimization[J]. Journal of Fluid Mechanics,2020,893:A1. doi: 10.1017/JFM.2020.220
    [6]
    REN F,RABAULT J,TANG H. Applying deep reinforce-ment learning to active flow control in weakly turbulent conditions[J]. Physics of Fluids,2021,33(3):037121. doi: 10.1063/5.0037371
    [7]
    RABAULT J,KUCHTA M,JENSEN A,et al. Artificial neural networks trained through deep reinforcement learning discover control strategies for active flow control[J]. Journal of Fluid Mechanics,2019,865:281-302. doi: 10.1017/JFM.2019.62
    [8]
    侯宏,杨建华. RBF网络用于边界层转捩中抽吸流优化控制[J]. 航空学报,2002,23(6):556-559. doi: 10.3321/j.issn:1000-6893.2002.06.003

    HOU H,YANG J H. Plant identification in active control of laminar boundary-layer transition by suction using RBF neural network[J]. Acta Aeronautica ET Astronautica Sinica,2002,23(6):556-559. doi: 10.3321/j.issn:1000-6893.2002.06.003
    [9]
    卢俊峰, 龚小庆. 统计学[M]. 杭州: 浙江工商大学出版社, 2020.
    [10]
    罗亦泳,姚宜斌,张立亭,等. 基于高斯过程的GPS高程转换模型[J]. 测绘通报,2015(11):11-14,59.

    LUO Y Y,YAO Y B,ZHANG L T,ET AL. GPS height transformation model based on Gaussian process[J]. Bulletin of Surveying and Mapping,2015(11):11-14,59.
    [11]
    罗亦泳. 基于高斯过程的大坝变形预测模型[J]. 浙江工业大学学报,2016,44(5):543-546. doi: 10.3969/j.issn.1006-4303.2016.05.015

    LUO Y Y. A Gaussian process based model for predicting deformations of dams[J]. Journal of Zhejiang University of Technology,2016,44(5):543-546. doi: 10.3969/j.issn.1006-4303.2016.05.015
    [12]
    孙斌,姚海涛,刘婷. 基于高斯过程回归的短期风速预测[J]. 中国电机工程学报,2012,32(29):104-109,5.

    SUN B,YAO H T,LIU T. Short-term wind speed forecasting based on gaussian process regression model[J]. Proceedings of the CSEE,2012,32(29):104-109,5.
    [13]
    张韶辉,苏强,赵永亮,等. 基于LASSO回归对冠心病相关血脂指标的筛选[J]. 中国综合临床,2021,37(2):148-153. doi: 10.3760/cma.j.cn101721-20200807-00060

    ZHANG S H,SU Q,ZHAO Y L,et al. Screening of lipid parameters in coronary artery disease based on Lasso regression[J]. Clinical Medicine of China,2021,37(2):148-153. doi: 10.3760/cma.j.cn101721-20200807-00060
    [14]
    黄梅,朱焱. 基于随机森林特征重要性的K-匿名特征优选[J]. 计算机应用与软件,2020,37(3):266-270. doi: 10.3969/j.issn.1000-386x.2020.03.045

    HUANG M,ZHU Y. K-anonymity feature optimization based on the importance of random forest features[J]. Computer Applications and Software,2020,37(3):266-270. doi: 10.3969/j.issn.1000-386x.2020.03.045
    [15]
    刘鑫童. 深度卷积神经网络在甲状腺超声图像中的分类研究[D]. 银川: 宁夏大学, 2018.

    LIU X T. Classification of deep convolution neural networks in thyroid ultrasound images[D]. Yinchuan: Ningxia Univer- sity, 2018.
    [16]
    SUN L,AN W,LIU X J,et al. On developing data-driven turbulence model for DG solution of RANS[J]. Chinese Journal of Aeronautics,2019,32(8):1869-1884. doi: 10.1016/J.CJA.2019.04.004
    [17]
    胡伟杰,黄增辉,刘学军,等. 基于自动核构造高斯过程的导弹气动性能预测[J]. 航空学报,2021,42(4):289-302.

    HU W J,HUANG Z H,LIU X J,et al. Missile aerodynamic performance prediction of Gaussian process through auto-matic kernel construction[J]. Acta Aeronautica ET Astro-nautica Sinica,2021,42(4):289-302.
    [18]
    高赫,刘学军,郭晋,等. 基于高斯过程回归的连续式风洞马赫数控制[J]. 空气动力学学报,2019,37(3):480-487. doi: 10.7638/kqdlxxb-2019.0018F

    GAO H,LIU X J,GUO J,et al. Mach number control of continuous wind tunnel based on Gaussian process regre-ssion[J]. Acta Aerodynamica Sinica,2019,37(3):480-487. doi: 10.7638/kqdlxxb-2019.0018F
    [19]
    NEMATZADEH Z, IBRAHIM R, SELAMAT A. Compa-rative studies on breast cancer classifications with k-fold cross validations using machine learning techniques[C]//Proc of the 2015 10th Asian control conference (ASCC). IEEE, 2015: 1-6. doi: 10.1109/ASCC.2015.7244654
    [20]
    宗豪华,吴云,宋慧敏,等. 等离子体合成射流的理论模型与重频激励特性[J]. 航空学报,2015,36(6):1762-1774.

    ZONG H H,WU Y,SONG H M,et al. Analytical model and repetitive working characteristics of plasma synthetic jet[J]. Acta Aeronautica ET Astronautica Sinica,2015,36(6):1762-1774.
    [21]
    李铮, 史志伟, 魏晨瑶, 等. 高超声速流场中等离子体合成射流激励器逆向喷流激波控制研究[C]//第十届全国流体力学学术会议论文摘要集. 2018.
    [22]
    PRESS M. Approximation methods for Gaussian process regression[J]. MIT Press,2007,14(2):333-350.
    [23]
    王林,夏智勋,罗振兵,等. 两电极等离子体合成射流激励器工作特性研究[J]. 物理学报,2014,63(19):194702. doi: 10.7498/aps.63.194702

    WANG L,XIA Z X,LUO Z B,et al. Experimental study on the characteristics of a two-electrode plasma synthetic jet actuator[J]. Acta Physica Sinica,2014,63(19):194702. doi: 10.7498/aps.63.194702
    [24]
    姜慧,邵涛,章程,等. 不同电极间距下纳秒脉冲表面介质阻挡放电分布特性[J]. 电工技术学报,2017,32(2):33-42.

    JIANG H,SHAO T,ZHANG C,et al. Distribution cha-racteristics of nanosecond-pulsed surface dielectric barrier discharge at different electrode gaps[J]. Transactions of China Electrotechnical Society,2017,32(2):33-42.
    [25]
    王林,罗振兵,夏智勋,等. 三电极等离子体合成射流激励器工作特性参数影响实验[J]. 气体物理,2017,2(6):1-8.

    WANG L,LUO Z B,XIA Z X,et al. Experimental study of the parameters influence on flow characteristic of the three-electrode plasma synthetic jet actuator[J]. Physics of Gases,2017,2(6):1-8.
    [26]
    RASMUSSEN C E, WILLIAMS C K I. Gaussian processes for machine learning[M]. America: the MIT press, 2005. doi: 10.7551/MITPRESS/3206.001.0001
    [27]
    徐冲,刘保国,刘开云,等. 基于组合核函数的高斯过程边坡角智能设计[J]. 岩土力学,2010,31(3):821-826. doi: 10.3969/j.issn.1000-7598.2010.03.028

    XU C,LIU B G,LIU K Y,et al. Slope angle intelligent design based on gaussian process with combinatorial kernel function[J]. Rock and Soil Mechanics,2010,31(3):821-826. doi: 10.3969/j.issn.1000-7598.2010.03.028
    [28]
    王娟,慈林林,姚康泽. 特征选择方法综述[J]. 计算机工程与科学,2005,27(12):68-71. doi: 10.3969/j.issn.1007-130X.2005.12.024

    WANG J,CI L L,YAO K Z. A survey of feature selection[J]. Computer Engineering and Science,2005,27(12):68-71. doi: 10.3969/j.issn.1007-130X.2005.12.024
    [29]
    刘晓宁. 基于LASSO特征选择的方法比较[J]. 安徽电子信息职业技术学院学报,2014,13(1):26-30. doi: 10.3969/j.issn.1671-802X.2014.01.009

    LIU X N. Comparison of feature selection methods based on lasso[J]. Journal of Anhui Vocational College of Electronics & Information Technology,2014,13(1):26-30. doi: 10.3969/j.issn.1671-802X.2014.01.009
    [30]
    李欣海. 随机森林模型在分类与回归分析中的应用[J]. 应用昆虫学报,2013,50(4):1190-1197. doi: 10.7679/j.issn.2095-1353.2013.163

    LI X H. Using “random forest” for classification and regression[J]. Chinese Journal of Applied Entomology,2013,50(4):1190-1197. doi: 10.7679/j.issn.2095-1353.2013.163
    [31]
    徐鹏,林森. 基于C4.5决策树的流量分类方法[J]. 软件学报,2009,20(10):2692-2704. doi: 10.3724/SP.J.1001.2009.03444

    XU P,LIN S. Internet traffic classification using C4.5 decision tree[J]. Journal of Software,2009,20(10):2692-2704. doi: 10.3724/SP.J.1001.2009.03444
    [32]
    BENESTY J, CHEN J D, HUANG Y T, et al. Pearson correlation coefficient[M]//Noise reduction in speech pro-cessing. Berlin Heidelberg: Springer Berlin Heidelberg, 2009: 1-4. doi: 10.1007/978-3-642-00296-0_5
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(3)

    Article Metrics

    Article views (1589) PDF downloads(84) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return