Volume 36 Issue 2
May  2022
Turn off MathJax
Article Contents
XU D C,ZHANG Y,LIU X L,et al. Measurement of wall-shear stress via micro-particle tracking velocimetry[J]. Journal of Experiments in Fluid Mechanics, 2022,36(2):131-138. doi: 10.11729/syltlx20210156
Citation: XU D C,ZHANG Y,LIU X L,et al. Measurement of wall-shear stress via micro-particle tracking velocimetry[J]. Journal of Experiments in Fluid Mechanics, 2022,36(2):131-138. doi: 10.11729/syltlx20210156

Measurement of wall-shear stress via micro-particle tracking velocimetry

doi: 10.11729/syltlx20210156
  • Received Date: 2021-10-15
  • Accepted Date: 2022-03-04
  • Rev Recd Date: 2022-02-14
  • Available Online: 2022-05-26
  • Publish Date: 2022-05-19
  • Micro-Particle Tracking Velocimetry (µ-PTV) was used to measure the flow field near the wall with high spatial resolution. By analyzing the velocity distribution of the viscous sublayer, the wall-shear stress can be analyzed by one-time linear regression. The wall-shear stress of the turbulent boundary layer at different Reynolds numbers based on momentum loss thickness was measured and the flow structure of reversal flow events was obtained at Reθ=1200. The results show that the micro-particle tracking velocimetry technology can accurately measure the wall-shear stress and the measurement error of wall-shear stress is below 2% for Reθ=1634–4070. Furthermore, the probability of reversal flow is extreme low, i.e., about 0.05% at Reθ=1200. The measured spatial scale of reversal flow structures is around 8×30 wall units, and therefore the measurement of reversal flow events requires high spatial resolution of the measurement technology. The results show that the reversal flow events occur with the appearance of strong spanwise vortices near the wall.es near the wall.
  • loading
  • [1]
    许春晓. 壁湍流相干结构和减阻控制机理[J]. 力学进展,2015,45(1):111-140.

    XU C X. Coherent structures and drag-reduction mechanism in wall turbulence[J]. Advances in Mechanics,2015,45(1):111-140.
    [2]
    BAARS W J,SQUIRE D T,TALLURU K M,et al. Wall-drag measurements of smooth- and rough-wall turbulent boundary layers using a floating element[J]. Experiments in Fluids,2016,57(5):1-16. doi: 10.1007/s00348-016-2168-y
    [3]
    CHENG X Q,WONG C W,ZHOU Y. A floating-element force balance of high resolution for friction drag measure-ment[J]. Measurement Science and Technology,2020,32(3):035301. doi: 10.1088/1361-6501/abb33d
    [4]
    DRIVER D M. Application of oil-film interferometry skin-friction measurement to large wind tunnels[J]. Experiments in Fluids,2003,34(6):717-725. doi: 10.1007/s00348-003-0613-1
    [5]
    IRELAND P T,JONES T V. Liquid crystal measurements of heat transfer and surface shear stress[J]. Measurement Science and Technology,2000,11(7):969-986. doi: 10.1088/0957-0233/11/7/313
    [6]
    BAI H L,LI W J,CHOW W,et al. A carbon nanotube sensor for wall shear stress measurement[J]. Experiments in Fluids,2010,48(4):679-691. doi: 10.1007/s00348-009-0760-0
    [7]
    LIU X H,LI Z Y,WU C J,et al. Toward calibration-free wall shear stress measurement using a dual hot-film sensor and Kelvin bridges[J]. Measurement Science and Technology,2018,29(10):105303. doi: 10.1088/1361-6501/aadb1b
    [8]
    HEAD M R,RECHENBERG I. The Preston tube as a means of measuring skin friction[J]. Journal of Fluid Mechanics,1962,14(1):1-17. doi: 10.1017/s0022112062001020
    [9]
    DURST F,KIKURA H,LEKAKIS I,et al. Wall shear stress determination from near-wall mean velocity data in turbu-lent pipe and channel flows[J]. Experiments in Fluids,1996,20(6):417-428. doi: 10.1007/BF00189380
    [10]
    HUTCHINS N,CHOI K S. Accurate measurements of local skin friction coefficient using hot-wire anemometry[J]. Progress in Aerospace Sciences,2002,38(4-5):421-446. doi: 10.1016/S0376-0421(02)00027-1
    [11]
    LI W F,ROGGENKAMP D,JESSEN W,et al. Reynolds number effects on the fluctuating velocity distribution in wall-bounded shear layers[J]. Measurement Science and Technology,2017,28(1):015302. doi: 10.1088/1361-6501/aa4e9e
    [12]
    RODRÍGUEZ-LÓPEZ E,BRUCE P J K,BUXTON O R H. A robust post-processing method to determine skin friction in turbulent boundary layers from the velocity profile[J]. Experiments in Fluids,2015,56(4):1-16. doi: 10.1007/s00348-015-1935-5
    [13]
    GATTI D,GÜTTLER A,FROHNAPFEL B,et al. Experimental assessment of spanwise-oscillating dielectric electroactive surfaces for turbulent drag reduction in an air channel flow[J]. Experiments in Fluids,2015,56(5):1-15. doi: 10.1007/s00348-015-1983-x
    [14]
    KÄHLER C J,SCHOLZ U,ORTMANNS J. Wall-shear-stress and near-wall turbulence measurements up to single pixel resolution by means of long-distance micro-PIV[J]. Experiments in Fluids,2006,41(2):327-341. doi: 10.1007/s00348-006-0167-0
    [15]
    申俊琦,王建杰,潘翀. 平板湍流边界层瞬时摩擦阻力的光学测量和统计分析[J]. 气体物理,2020,5(5):13-23.

    SHEN J Q,WANG J J,PAN C. Optical measurement and statistical analysis of instantaneous wall-shear stress in a turbulent boundary layer[J]. Physics of Gases,2020,5(5):13-23.
    [16]
    SPALART P R,COLEMAN G N. Numerical study of a separation bubble with heat transfer[J]. European Journal of Mechanics-B/Fluids,1997,16(2):169-189.
    [17]
    KHOURY G K E,SCHLATTER P,BRETHOUWER G,et al. Turbulent pipe flow: Statistics, re-dependence, structures and similarities with channel and boundary layer flows[J]. Journal of Physics:Conference Series,2014,506:012010. doi: 10.1088/1742-6596/506/1/012010
    [18]
    CARDESA J I,MONTY J P,SORIA J,et al. Skin-friction critical points in wall-bounded flows[J]. Journal of Physics:Conference Series,2014,506:012009. doi: 10.1088/1742-6596/506/1/012009
    [19]
    LENAERS P,LI Q,BRETHOUWER G,et al. Rare backflow and extreme wall-normal velocity fluctuations in near-wall turbulence[J]. Physics of Fluids,2012,24(3):035110. doi: 10.1063/1.3696304
    [20]
    CHIN R C,MONTY J P,CHONG M S,et al. Conditionally averaged flow topology about a critical point pair in the skin friction field of pipe flows using direct numerical simula-tions[J]. Physical Review Fluids,2018,3(11):114607. doi: 10.1103/physrevfluids.3.114607
    [21]
    GUERRERO B,LAMBERT M F,CHIN R C. Extreme wall shear stress events in turbulent pipe flows: spatial charac-teristics of coherent motions[J]. Journal of Fluid Mechanics,2020,904:A18. doi: 10.1017/jfm.2020.689
    [22]
    GUERRERO B,LAMBERT M F,CHIN R C. Precursors of backflow events and their relationship with the near-wall self-sustaining process[J]. Journal of Fluid Mechanics,2022,933:A33. doi: 10.1017/jfm.2021.1082
    [23]
    ECKELMANN H. The structure of the viscous sublayer and the adjacent wall region in a turbulent channel flow[J]. Journal of Fluid Mechanics,1974,65(3):439-459. doi: 10.1017/s0022112074001479
    [24]
    COLELLA K J,KEITH W L. Measurements and scaling of wall shear stress fluctuations[J]. Experiments in Fluids,2003,34(2):253-260. doi: 10.1007/s00348-002-0552-2
    [25]
    TROPEA C, YARIN A L, FOSS J F. Springer handbook of experimental fluid mechanics[M]. Berlin: Springer, 2007.
    [26]
    SORIA J. An investigation of the near wake of a circular cylinder using a video-based digital cross-correlation particle image velocimetry technique[J]. Experimental Thermal and Fluid Science,1996,12(2):221-233. doi: 10.1016/0894-1777(95)00086-0
    [27]
    WESTERWEEL J,SCARANO F. Universal outlier detec-tion for PIV data[J]. Experiments in Fluids,2005,39(6):1096-1100. doi: 10.1007/s00348-005-0016-6
    [28]
    CROCKER J C,GRIER D G. Methods of digital video microscopy for colloidal studies[J]. Journal of Colloid and Interface Science,1996,179(1):298-310. doi: 10.1006/jcis.1996.0217
    [29]
    BENEDICT L H,GOULD R D. Towards better uncertainty estimates for turbulence statistics[J]. Experiments in Fluids,1996,22(2):129-136. doi: 10.1007/s003480050030
    [30]
    NAGIB H M,CHAUHAN K A,MONKEWITZ P A. Approach to an asymptotic state for zero pressure gradient turbulent boundary layers[J]. Philosophical Transactions of the Royal Society A:Mathematical, Physical and Enginee-ring Sciences,2007,365(1852):755-770. doi: 10.1098/rsta.2006.1948
    [31]
    SCHLATTER P,ÖRLÜ R. Assessment of direct numerical simulation data of turbulent boundary layers[J]. Journal of Fluid Mechanics,2010,659:116-126. doi: 10.1017/s0022112010003113
    [32]
    HU Z W,MORFEY C L,SANDHAM N D. Wall pressure and shear stress spectra from direct simulations of channel flow[J]. AIAA Journal,2006,44(7):1541-1549. doi: 10.2514/1.17638
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(1)

    Article Metrics

    Article views (2312) PDF downloads(84) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return