Volume 36 Issue 3
Jul.  2022
Turn off MathJax
Article Contents
XU C Z,DU T,HAN Z H,et al. Comparison of machine learning data fusion methods applied to aerodynamic modeling of rocket first stage with grid fins[J]. Journal of Experiments in Fluid Mechanics, 2022,36(3):79-92. doi: 10.11729/syltlx20210154
Citation: XU C Z,DU T,HAN Z H,et al. Comparison of machine learning data fusion methods applied to aerodynamic modeling of rocket first stage with grid fins[J]. Journal of Experiments in Fluid Mechanics, 2022,36(3):79-92. doi: 10.11729/syltlx20210154

Comparison of machine learning data fusion methods applied to aerodynamic modeling of rocket first stage with grid fins

doi: 10.11729/syltlx20210154
  • Received Date: 2021-11-26
  • Accepted Date: 2022-03-10
  • Rev Recd Date: 2022-02-23
  • Available Online: 2022-07-12
  • Publish Date: 2022-07-04
  • Machine learning data fusion method has attracted significant attention recently in aerodynamic database construction since it makes a trade-off between high prediction accuracy and low fitting cost by fusing samples of different fidelities. But the research on methods for complex engineering project is not sufficient. In this paper, several commonly used variable-fidelity models (VFMs) of data fusion are applied to the control law design in the rocket first stage landing area control project with grid fins. Based on wind tunnel tests of partial test states, combined with CFD simulation results, VFMs successfully predict the whole aerodynamic characteristics of grid fins. Here, our objective is to compare the performances of these four VFM methods (AS-MFS, Co-Kriging, HK, MFNN) and the results show that: Gaussian exponential function is more suitable for aerodynamic modeling problems; Co-Kriging has the best performance in the interpolation of aerodynamic data; HK model has high prediction accuracy for interpolation but has poor performance for extrapolation; MFNN model can obtain smoother and more reasonable results in the extrapolation region.
  • loading
  • [1]
    杜涛,陈闽慷,李凰立,等. 变精度模型(VCM)的自适应预处理方法研究[J]. 空气动力学学报,2018,36(2):315-319. doi: 10.7638/kqdlxxb-2016.0040

    DU T,CHEN M K,LI H L,et al. Research on adaptive preconditioning method for variable complexity model[J]. Acta Aerodynamica Sinica,2018,36(2):315-319. doi: 10.7638/kqdlxxb-2016.0040
    [2]
    杜涛,许晨舟,王国辉,等. 人工智能气动特性预测技术在火箭子级落区控制项目的应用[J]. 宇航学报,2021,42(1):61-73. doi: 10.3873/j.issn.1000-1328.2021.01.007

    DU T,XU C Z,WANG G H,et al. The application of aerodynamic coefficients prediction technique via artificial intelligence method to rocket first stage landing area control project[J]. Journal of Astronautics,2021,42(1):61-73. doi: 10.3873/j.issn.1000-1328.2021.01.007
    [3]
    张天姣,钱炜祺,周宇,等. 人工智能与空气动力学结合的初步思考[J]. 航空工程进展,2019,10(1):1-11.

    ZHANG T J,QIAN W Q,ZHOU Y,et al. Preliminary thoughts on the combination of artificial intelligence and aerodynamics[J]. Advances in Aeronautical Science and Engineering,2019,10(1):1-11.
    [4]
    唐志共,王文正,陈功,等. 气动模型在现代气动试验设计中的应用研究[J]. 空气动力学学报,2017,35(2):172-176. doi: 10.7638/kqdlxxb—2015.0190

    TANG Z G,WANG W Z,CHEN G,et al. Research on the application of aerodynamic models in modern design of aerodynamic experiments[J]. Acta Aerodynamica Sinica,2017,35(2):172-176. doi: 10.7638/kqdlxxb—2015.0190
    [5]
    SLOTNICK J, KHODADOUST A, ALONSO J, et al. CFD vision 2030 study: A path to revolutionary computational aerosciences[R]. NASA/CR-2014-218178, 2014.
    [6]
    韩忠华,许晨舟,乔建领,等. 基于代理模型的高效全局气动优化设计方法研究进展[J]. 航空学报,2020,41(5):25-65.

    HAN Z H,XU C Z,QIAO J L,et al. Recent progress of efficient global aerodynamic shape optimization using surrogate-based approach[J]. Acta Aeronautica et Astronautica Sinica,2020,41(5):25-65.
    [7]
    韩忠华. Kriging模型及代理优化算法研究进展[J]. 航空学报,2016,37(11):3197-3225.

    HAN Z H. Kriging surrogate model and its application to design optimization: a review of recent progress[J]. Acta Aeronautica et Astronautica Sinica,2016,37(11):3197-3225.
    [8]
    周奇,杨扬,宋学官,等. 变可信度近似模型及其在复杂装备优化设计中的应用研究进展[J]. 机械工程学报,2020,56(24):219-245. doi: 10.3901/JME.2020.24.219

    ZHOU Q,YANG Y,SONG X G,et al. Survey of multi-fidelity surrogate models and their applications in the design and optimization of engineering equipment[J]. Journal of Mechanical Engineering,2020,56(24):219-245. doi: 10.3901/JME.2020.24.219
    [9]
    何开锋,钱炜祺,汪清,等. 数据融合技术在空气动力学研究中的应用[J]. 空气动力学学报,2014,32(6):777-782. doi: 10.7638/kqdlxxb—2014.0072

    HE K F,QIAN W Q,WANG Q,et al. Application of data fusion technique in aerodynamics studies[J]. Acta Aerodynamica Sinica,2014,32(6):777-782. doi: 10.7638/kqdlxxb—2014.0072
    [10]
    HAFTKA R T. Combining global and local approximations[J]. AIAA Journal,1991,29(9):1523-1525. doi: 10.2514/3.10768
    [11]
    CHANG K J,HAFTKA R T,GILES G L,et al. Sensitivity-based scaling for approximating structural response[J]. Journal of Aircraft,1993,30(2):283-288. doi: 10.2514/3.48278
    [12]
    ALEXANDROV N M,DENNIS J E,LEWIS R M,et al. A trust-region framework for managing the use of approximation models in optimization[J]. Structural Optimization,1998,15(1):16-23. doi: 10.1007/BF01197433
    [13]
    ALEXANDROV N, NIELSEN E, LEWIS R, et al. First-order model management with variable-fidelity physics applied to multi-element airfoil optimization[C]//Proc of the 8th Symposium on Multidisciplinary Analysis and Optimization. 2000. doi: 10.2514/6.2000-4886
    [14]
    SHU L S,JIANG P,SONG X G,et al. Novel approach for selecting low-fidelity scale factor in multifidelity metamodeling[J]. AIAA Journal,2019,57(12):5320-5330. doi: 10.2514/1.j057989
    [15]
    PARK C,HAFTKA R T,KIM N H. Low-fidelity scale factor improves Bayesian multi-fidelity prediction by reducing bumpiness of discrepancy function[J]. Structural and Multidisciplinary Optimization,2018,58(2):399-414. doi: 10.1007/s00158-018-2031-2
    [16]
    WANG S,LIU Y,ZHOU Q,et al. A multi-fidelity surrogate model based on moving least squares: fusing different fidelity data for engineering design[J]. Structural and Multidisciplinary Optimization,2021,64(6):3637-3652. doi: 10.1007/s00158-021-03044-5
    [17]
    HAN Z H,GÖRTZ S,ZIMMERMANN R. Improving variable-fidelity surrogate modeling via gradient-enhanced kriging and a generalized hybrid bridge function[J]. Aerospace Science and Technology,2013,25(1):177-189. doi: 10.1016/j.ast.2012.01.006
    [18]
    BANDLER J W,BIERNACKI R M,CHEN S H,et al. Space mapping technique for electromagnetic optimization[J]. IEEE Transactions on Microwave Theory and Techniques,1994,42(12):2536-2544. doi: 10.1109/22.339794
    [19]
    ROBINSON T D,ELDRED M S,WILLCOX K E,et al. Surrogate-based optimization using multifidelity models with variable parameterization and corrected space mapping[J]. AIAA Journal,2008,46(11):2814-2822. doi: 10.2514/1.36043
    [20]
    JONSSON E, LEIFSSON L, KOZIEL S. Aerodynamic optimization of wings by space mapping[C]//Proc of the 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. 2013. doi: 10.2514/6.2013-780
    [21]
    何磊,钱炜祺,汪清,等. 机器学习方法在气动特性建模中的应用[J]. 空气动力学学报,2019,37(3):470-479. doi: 10.7638/kqdlxxb—2019.0033

    HE L,QIAN W Q,WANG Q,et al. Applications of machine learning for aerodynamic characteristics modeling[J]. Acta Aerodynamica Sinica,2019,37(3):470-479. doi: 10.7638/kqdlxxb—2019.0033
    [22]
    KENNEDY M,O'HAGAN A. Predicting the output from a complex computer code when fast approximations are available[J]. Biometrika,2000,87(1):1-13. doi: 10.1093/biomet/87.1.1
    [23]
    QIAN P Z G,WU C F J. Bayesian hierarchical modeling for integrating low-accuracy and high-accuracy experiments[J]. Technometrics,2008,50(2):192-204. doi: 10.1198/004017008000000082
    [24]
    LE GRATIET L,GARNIER J. Recursive co-kriging model for design of computer experiments with multiple levels of fidelity[J]. International Journal for Uncertainty Quantification,2014,4(5):365-386. doi: 10.1615/int.j.uncertaintyquantification.2014006914
    [25]
    XIAO M Y,ZHANG G H,BREITKOPF P,et al. Extended Co-Kriging interpolation method based on multi-fidelity data[J]. Applied Mathematics and Computation,2018,323:120-131. doi: 10.1016/j.amc.2017.10.055
    [26]
    ZAYTSEV A. Reliable surrogate modeling of engineering data with more than two levels of fidelity[C]//Proc of the 2016 7th International Conference on Mechanical and Aerospace Engineering (ICMAE). 2016: 341-345. doi: 10.1109/ICMAE.2016.7549563
    [27]
    ZHOU Q,WU Y D,GUO Z D,et al. A generalized hierarchical co-Kriging model for multi-fidelity data fusion[J]. Structural and Multidisciplinary Optimization,2020,62(4):1885-1904. doi: 10.1007/s00158-020-02583-7
    [28]
    HAN Z H,GÖRTZ S. Alternative cokriging method for variable-fidelity surrogate modeling[J]. AIAA Journal,2012,50(5):1205-1210. doi: 10.2514/1.J051243
    [29]
    ZIMMERMANN R, HAN Z H. Simplified cross-correlation estimation for multifidelity surrogate cokriging models[J]. Advances and Applications in Mathematical Sciences, 2010.
    [30]
    HAN Z H,GÖRTZ S. Hierarchical kriging model for variable-fidelity surrogate modeling[J]. AIAA Journal,2012,50(9):1885-1896. doi: 10.2514/1.J051354
    [31]
    MENG X H,KARNIADAKIS G E. A composite neural network that learns from multi-fidelity data: application to function approximation and inverse PDE problems[J]. Journal of Computational Physics,2020,401:109020. doi: 10.1016/j.jcp.2019.109020
    [32]
    MENG X H,BABAEE H,KARNIADAKIS G E. Multi-fidelity Bayesian neural networks: Algorithms and applications[J]. Journal of Computational Physics,2021,438:110361. doi: 10.1016/j.jcp.2021.110361
    [33]
    HE L,QIAN W Q,ZHAO T,et al. Multi-fidelity aerodynamic data fusion with a deep neural network modeling method[J]. Entropy (Basel, Switzerland),2020,22(9):1022. doi: 10.3390/e22091022
    [34]
    ZHANG X S,XIE F F,JI T W,et al. Multi-fidelity deep neural network surrogate model for aerodynamic shape optimization[J]. Computer Methods in Applied Mechanics and Engineering,2021,373:113485. doi: 10.1016/j.cma.2020.113485
    [35]
    SATRIA P P,RIZKI Z L,SHIMOYAMA K. Gaussian process surrogate model with composite kernel learning for engineering design[J]. AIAA Journal,2020,58(4):1864-1880. doi: 10.2514/1.J058807
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(16)  / Tables(3)

    Article Metrics

    Article views (1587) PDF downloads(95) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return