Volume 36 Issue 4
Sep.  2022
Turn off MathJax
Article Contents
YUAN X,YU X,PENG J B,et al. Study on visualization of supersonic flame using Three Dimensional Laser–Induced Fluorescence (3DLIF)[J]. Journal of Experiments in Fluid Mechanics, 2022,36(4):30-36. doi: 10.11729/syltlx20210150
Citation: YUAN X,YU X,PENG J B,et al. Study on visualization of supersonic flame using Three Dimensional Laser–Induced Fluorescence (3DLIF)[J]. Journal of Experiments in Fluid Mechanics, 2022,36(4):30-36. doi: 10.11729/syltlx20210150

Study on visualization of supersonic flame using Three Dimensional Laser–Induced Fluorescence (3DLIF)

doi: 10.11729/syltlx20210150
  • Received Date: 2021-09-30
  • Accepted Date: 2022-01-06
  • Rev Recd Date: 2022-01-04
  • Available Online: 2022-09-23
  • Publish Date: 2022-09-02
  • In view of the urgent need of scramjet combustion diagnosis, especially the visualization of flame space structure, it needs to realize three–dimensional measurement of the supersonic flames. The Three Dimensional Laser–Induced Fluorescence (3DLIF) technology can realize the visualization of the flame combustion space. For the supersonic coaxial jet combustion, a scanning galvanometer multi–plane 3DLIF experimental device was built, and a laser sheet shaping scheme with expanded scanning range was proposed, which realizes the multi–plane 3DLIF visualization of the supersonic flames. The interpolation algorithm was used to reconstruct the three–dimensional average image of supersonic flame with a spatial scale of 50 mm×85 mm×20 mm and a time scale of 5 ms, which verifies the feasibility of using the 3DLIF technology to visualize the combustion space structure of the scramjet test bench. The effect of the flame speed on the flame structure shape using the three–dimensional images is discussed.
  • loading
  • [1]
    金台. 超声速湍流燃烧多物理耦合的直接数值模拟研究[D]. 杭州: 浙江大学, 2015.

    JIN T. Direct numerical simulation of coupled multi-physics in supersonic turbulent combustion[D]. Hangzhou: Zhejiang University, 2015.
    [2]
    朱家健,万明罡,吴戈,等. 激光诱导荧光技术燃烧诊断的研究进展[J]. 中国激光,2021,48(4):0401005. doi: 10.3788/CJL202148.0401005

    ZHU J J,WAN M G,WU G,et al. Research progress of laser-induced fluorescence technology in combustion diagno-stics[J]. Chinese Journal of Lasers,2021,48(4):0401005. doi: 10.3788/CJL202148.0401005
    [3]
    吴戈,李韵,万明罡,等. 平面激光诱导荧光技术在超声速燃烧火焰结构可视化中的应用[J]. 实验流体力学,2020,34(3):70-77. doi: 10.11729/syltlx20190168

    WU G,LI Y,WAN M G,et al. Visualization of flame structure in supersonic combustion by Planar Laser Induced Fluorescence technique[J]. Journal of Experiments in Fluid Mechanics,2020,34(3):70-77. doi: 10.11729/syltlx20190168
    [4]
    PRASAD R R,SREENIVASAN K R. Quantitative three-dimensional imaging and the structure of passive scalar fields in fully turbulent flows[J]. Journal of Fluid Mechanics,1990,216:1-34. doi: 10.1017/s0022112090000325
    [5]
    CHO K Y, SATIJA A, POURPOINT T L, et al. Time-resolved 3D OH planar laser-induced fluorescence system for multiphase combustion[C]//Proc of the 8th US National Combustion Meeting. 2013.
    [6]
    WELLANDER R,RICHTER M,ALDÉN M. Time resolved,3D imaging (4D) of two phase flow at a repetition rate of 1 kHz[J]. Optics Express,2011,19(22):21508-21514. doi: 10.1364/OE.19.021508
    [7]
    XU W J,LIU N,MA L. Super resolution PLIF demon-strated in turbulent jet flows seeded with I2[J]. Optics & Laser Technology,2018,101:216-222. doi: 10.1016/j.optlastec.2017.11.024
    [8]
    黄真理,周维虎,曲兆松. 三维激光诱导荧光(3DLIF)技术及测量水体标量场设备研究[J]. 实验流体力学,2017,31(5):1-14. doi: 10.11729/syltlx20160173

    HUANG Z L,ZHOU W H,QU Z S. Study on three dimensional laser-induced fluorescence (3DLIF) techniques and its instrument[J]. Journal of Experiments in Fluid Mechanics,2017,31(5):1-14. doi: 10.11729/syltlx20160173
    [9]
    WELLANDER R,RICHTER M,ALDÉN M. Time-resolved(kHz) 3D imaging of OH PLIF in a flame[J]. Experiments in Fluids,2014,55(6):1-12. doi: 10.1007/s00348-014-1764-y
    [10]
    KRISTENSSON E,LI Z M,BERROCAL E,et al. Instantaneous 3D imaging of flame species using coded laser illumination[J]. Proceedings of the Combustion Institute,2017,36(3):4585-4591. doi: 10.1016/j.proci.2016.08.040
    [11]
    LI T,PAREJA J,FUEST F,et al. Tomographic imaging of OH laser-induced fluorescence in laminar and turbulent jet flames[J]. Measurement Science and Technology,2018,29(1):015206. doi: 10.1088/1361-6501/aa938a
    [12]
    HALLS B R, JIANG N B, THUL D J, et al. High-speed, three-dimensional tomographic imaging of concentration fields in turbulent flows[C]//Proc of the Conference on Lasers and Electro-Optics. 2016. doi: 10.1364/cleo_at.2016.aw4k.2
    [13]
    MA L, XU W J, LEI Q C, et al. Single-shot 3D flame imaging using CH-based VLIF (volumetric laser induced fluorescence)[C]//Proc of the 32nd AIAA Aerodynamic Measurement Technology and Ground Testing Conference. 2016. doi: 10.2514/6.2016-4028
    [14]
    PENG J B,CAO Z,YU X,et al. Analysis of combustion instability of hydrogen fueled scramjet combustor on high-speed OH-PLIF measurements and dynamic mode decompo-sition[J]. International Journal of Hydrogen Energy,2020,45(23):13108-13118. doi: 10.1016/j.ijhydene.2020.02.216
    [15]
    YU X,CAO Z,PENG J B,et al. Statistical analysis of flame oscillation characterization of oxy-fuel in heavy oil boiler using OH planar laser-induced fluorescence[J]. Journal of Spectroscopy,2019,2019:7085232. doi: 10.1155/2019/7085232
    [16]
    MILLER V A,TROUTMAN V A,HANSON R K. Near-kHz 3D tracer-based LIF imaging of a co-flow jet using toluene[J]. Measurement Science and Technology,2014,25(7):075403. doi: 10.1088/0957-0233/25/7/075403
    [17]
    刘冰,何国强,秦飞. 乙烯高速射流点火过程试验研究[J]. 实验流体力学,2018,32(2):24-27. doi: 10.11729/syltlx20180003

    LIU B,HE G Q,QIN F. Experimental study on ignition process for ethylene high speed jet[J]. Journal of Experi-ments in Fluid Mechanics,2018,32(2):24-27. doi: 10.11729/syltlx20180003
    [18]
    McRAE C D,JOHANSEN C T,DANEHY P M,et al. Image analysis of hydroxyl-radical planar laser-induced fluorescence in turbulent supersonic combustion[J]. Journal of Propulsion and Power,2016,32(3):542-559. doi: 10.2514/1.b35611
    [19]
    PENG J B,CAO Z,YU X,et al. Continuous 500-Hz OH-PLIF measurements in a hydrogen-fueled scramjet combustor[J]. Frontiers in Physics,2020,8:101. doi: 10.3389/fphy.2020.00101
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(1)

    Article Metrics

    Article views (439) PDF downloads(54) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return