Volume 37 Issue 2
Apr.  2023
Turn off MathJax
Article Contents
ZHANG W G, LI G Q, LI D, et al. Research on dynamic wind tunnel test technology of rotor airfoil[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(2): 78-93 doi: 10.11729/syltlx20210147
Citation: ZHANG W G, LI G Q, LI D, et al. Research on dynamic wind tunnel test technology of rotor airfoil[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(2): 78-93 doi: 10.11729/syltlx20210147

Research on dynamic wind tunnel test technology of rotor airfoil

doi: 10.11729/syltlx20210147
  • Received Date: 2021-09-30
  • Accepted Date: 2022-01-13
  • Rev Recd Date: 2021-12-26
  • Publish Date: 2023-04-25
  • It is urgent to establish and develop the dynamic wind tunnel test technology for rotor airfoil design optimization and performance determination. Through dynamic simulation and structural optimization design, based on the FL–11 low-speed wind tunnel, a two degree of freedom dynamic test device for rotor airfoil is developed. It can not only complete the single degree of freedom dynamic motion of pitch and plunge, but also realize the coupling operation of pitch/plunge, with the highest oscillation frequency of 5 Hz. Based on the FL–20 continuous transonic wind tunnel, a set of high-frequency and high-speed oscillation test device for rotor airfoil is developed, with the maximum pitch oscillation frequency exceeding 17 Hz and the maximum test Reynolds number exceeding 5 × 106. The simulated parameter envelope meets the parameter requirements of the real helicopter. A large-scale rotor airfoil dynamic test device is developed based on the FL–14 low-speed wind tunnel, with the airfoil model chord length of 800 mm and the maximum test Reynolds number of 4 × 106. The accurate measuring and testing technique of the rotor airfoil dynamic test is developed, and the verification test is carried out. The results show that the dynamic test data of the rotor airfoil are reasonable and reliable, which indicates that the test system and related test technology have high reliability. It can provide important technical support for the research of rotor airfoil dynamic stall.
  • loading
  • [1]
    史勇杰, 厉聪聪, 徐国华. 基于合成射流的旋翼翼型动态失速控制研究[J]. 南京航空航天大学学报, 2020, 52(2): 270–279.

    SHI Y J, LI C C, XU G H. Rotor airfoil dynamic stall control based on synthetic jet[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2020, 52(2): 270–279.
    [2]
    NEGI P S, HANIFI A, HENNINGSON D S. Unsteady response of natural laminar flow airfoil undergoing small-amplitude pitch oscillations[J]. AIAA Journal, 2021, 59(8): 2868–2877. doi: 10.2514/1.J059743
    [3]
    马奕扬, 招启军, 赵国庆. 基于后缘小翼的旋翼翼型动态失速控制分析[J]. 航空学报, 2017, 38(3): 127–137.

    MA Y Y, ZHAO Q J, ZHAO G Q. Dynamic stall control of rotor airfoil via trailing-edge flap[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(3): 127–137.
    [4]
    喻伯平, 李高华, 谢亮, 等. 基于代理模型的旋翼翼型动态失速优化设计[J]. 浙江大学学报(工学版), 2020, 54(4): 833–842.

    YU B P, LI G H, XIE L, et al. Dynamic stall optimization design of rotor airfoil based on surrogate model[J]. Journal of Zhejiang University (Engineering Science), 2020, 54(4): 833–842.
    [5]
    QIU Z, WANG F X. Aeroelastic responses of airfoil under dynamic stall forced to oscillate by cyclic pitch input[J]. Journal of Sound and Vibration, 2020, 479: 115366. doi: 10.1016/j.jsv.2020.115366
    [6]
    戴玉婷, 严慧, 王林鹏. 基于非线性气动力的失速颤振计算与试验研究[J]. 工程力学, 2020, 37(8): 230–236. doi: 10.6052/j.issn.1000-4750.2019.03.0141

    DAI Y T, YAN H, WANG L P. Calculation and experi-mental study of stall flutter based on nonlinear aero-dynamics[J]. Engineering Mechanics, 2020, 37(8): 230–236. doi: 10.6052/j.issn.1000-4750.2019.03.0141
    [7]
    张庆, 叶正寅. NACA0012翼型跨声速强迫运动非定常气动力模型[J]. 哈尔滨工程大学学报, 2020, 41(11): 1683–1688.

    ZHANG Q, YE Z Y. Unsteady aerodynamic model of NACA0012 associated with forced oscillations and trans-lations in transonic flight[J]. Journal of Harbin Engineering University, 2020, 41(11): 1683–1688.
    [8]
    朱呈勇, 王同光. 振荡翼型和振荡来流下的动态失速数值研究[J]. 太阳能学报, 2019, 40(9): 2433–2440.

    ZHU C Y, WANG T G. Numerical investigation into dynamic stall under pitch oscillation and oscillating free-stream[J]. Acta Energiae Solaris Sinica, 2019, 40(9): 2433–2440.
    [9]
    RAZAVI DEHKORDI M H, SOLTANI M R, DAVARI A R. Statistical analysis on the effect of reduced frequency on the aerodynamic behavior of an airfoil in dynamic physical motions[J]. Physica A: Statistical Mechanics and Its Applications, 2019, 535: 122450. doi: 10.1016/j.physa.2019.122450
    [10]
    CARR L W, CHANDRASEKHARA M S. Compressibility effects on dynamic stall[J]. Progress in Aerospace Sciences, 1996, 32(6): 523–573. doi: 10.1016/0376-0421(95)00009-7
    [11]
    CARR L W. Progress in analysis and prediction of dynamic stall[J]. Journal of Aircraft, 1988, 25(1): 6–17. doi: 10.2514/3.45534
    [12]
    RICHTER K, KOCH S, GARDNER A D, et al. Experi-mental investigation of unsteady transition on a pitching rotor blade airfoil[J]. Journal of the American Helicopter Society, 2014, 59(1): 1–12. doi: 10.4050/jahs.59.012001
    [13]
    GARDNER A D, WOLF C C, RAFFEL M. Review of measurement techniques for unsteady helicopter rotor flows[J]. Progress in Aerospace Sciences, 2019, 111: 100566. doi: 10.1016/j.paerosci.2019.100566
    [14]
    HILLENHERMS C. Experimental investigation of a super-critical airfoil oscillating in pitch at transonic flow[M]. Aachen: Shaker Verlag GmbH, 2003.
    [15]
    MERZ C B, WOLF C C, RICHTER K, et al. Experimental investigation of dynamic stall on a pitching rotor blade tip[C]//Proc of the New Results in Numerical and Experi-mental Fluid Mechanics X. 2016. doi: 10.1007/978-3-319-27279-5_30
    [16]
    AL-JABURI K, FESZTY D, NITZSCHE F. A methodology for simulating 2D shock-induced dynamic stall at flight test-based fluctuating freestream[J]. Chinese Journal of Aero-nautics, 2019, 32(10): 2223–2238. doi: 10.1016/j.cja.2019.05.009
    [17]
    HILLENHERMS C, SCHRÖDER W, LIMBERG W. Experi-mental investigation of a pitching airfoil in transonic flow[J]. Aerospace Science and Technology, 2004, 8(7): 583–590. doi: 10.1016/j.ast.2004.07.001
    [18]
    GARDNER A D, KLEIN C, SACHS W E, et al. Investi-gation of three-dimensional dynamic stall on an airfoil using fast-response pressure-sensitive paint[J]. Experiments in Fluids, 2014, 55(9): 1–14. doi: 10.1007/s00348-014-1807-4
    [19]
    GARDNER A D, RICHTER K. Transition determination on a periodic pitching airfoil using phase averaging of pressure data[C]// Proc of the New Results in Numerical and Experimental Fluid Mechanics X, 2016. doi: 10.1007/978-3-319-27279-5_26
    [20]
    RAFFEL M, KOMPENHANS J, WERNERT P. Investi-gation of the unsteady flow velocity field above an airfoil pitching under deep dynamic stall conditions[J]. Experi-ments in Fluids, 1995, 19(2): 103–111. doi: 10.1007/BF00193856
    [21]
    WANG Q, ZHAO Q J. Experiments on unsteady vortex flowfield of typical rotor airfoils under dynamic stall conditions[J]. Chinese Journal of Aeronautics, 2016, 29(2): 358–374. doi: 10.1016/j.cja.2016.02.013
    [22]
    DAVARI A R. Wake structure and similar behavior of wake profiles downstream of a plunging airfoil[J]. Chinese Journal of Aeronautics, 2017, 30(4): 1281–1293. doi: 10.1016/j.cja.2017.05.007
    [23]
    LI Z Y, FENG L H, KARBASIAN H R, et al. Experimental and numerical investigation of three-dimensional vortex structures of a pitching airfoil at a transitional Reynolds number[J]. Chinese Journal of Aeronautics, 2019, 32(10): 2254–2266. doi: 10.1016/j.cja.2019.04.015
    [24]
    WEI B B, GAO Y W, LI D. Physics of dynamic stall vortex during pitching oscillation of dynamic airfoil[J]. Interna-tional Journal of Aeronautical and Space Sciences, 2021, 22(6): 1263–1277. doi: 10.1007/s42405-021-00389-5
    [25]
    WOOD J N, BREUER M, DE NAYER G. Experimental investigations on the dynamic behavior of a 2-DOF airfoil in the transitional Re number regime based on digital-image correlation measurements[J]. Journal of Fluids and Struc-tures, 2020, 96: 103052. doi: 10.1016/j.jfluidstructs.2020.103052
    [26]
    LI G Q, ZHANG W G, JIANG Y B, et al. Experimental investigation of dynamic stall flow control for wind turbine airfoils using a plasma actuator[J]. Energy, 2019, 185: 90–101. doi: 10.1016/j.energy.2019.07.017
    [27]
    GARDNER A D, RICHTER K, MAI H, et al. Experimental investigation of air jets to control shock-induced dynamic stall[J]. Journal of the American Helicopter Society, 2014, 59(2): 1–11. doi: 10.4050/jahs.59.022003
    [28]
    ZANOTTI A, GIBERTINI G. Experimental assessment of an active L-shaped tab for dynamic stall control[J]. Journal of Fluids and Structures, 2018, 77: 151–169. doi: 10.1016/j.jfluidstructs.2017.11.010
    [29]
    张卫国, 武杰, 兰波, 等. 旋翼翼型低速风洞静、动态试验技术研究[C]// 中国力学大会论文集. 2015.

    ZHANG W G, Wu J, Lan B, et al. Experimental techniques for low speed static and dynamic test of rotor airfoil[C]// Proc of the Chinese Mechanics Conference. 2015.
    [30]
    GAO Y W, ZHU Q L, WANG L. Measurement of unsteady transition on a pitching airfoil using dynamic pressure sensors[J]. Journal of Mechanical Science and Technology, 2016, 30(10): 4571–4578. doi: 10.1007/s12206-016-0928-5
    [31]
    王莹, 高超, 吕哲. 跨声速风洞翼型动态失速试验系统研制[J]. 科学技术与工程, 2018, 18(32): 95–103. doi: 10.3969/j.issn.1671-1815.2018.32.016

    WANG Y, GAO C, LÜ Z. The development of airfoil dynamic stall experiment system in a transonic wind tunnel[J]. Science Technology and Engineering, 2018, 18(32): 95–103. doi: 10.3969/j.issn.1671-1815.2018.32.016
    [32]
    许和勇, 邢世龙, 叶正寅, 等. 基于充气前缘技术的旋翼翼型动态失速抑制[J]. 航空学报, 2017, 38(6): 86–98.

    XU H Y, XING S L, YE Z Y, et al. Dynamic stall suppression for rotor airfoil based on inflatable leading edge technology[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(6): 86–98.
    [33]
    史志伟. 非定常自由来流对模型动态气动特性影响的实验研究[D]. 南京: 南京航空航天大学, 2006.

    SHI Z W. Experimental research of oscillating free-stream effects on dynamic characteristics of wind tunnel models[D]. Nanjing: Nanjing University of Aeronautics and Astronau-tics, 2006.
    [34]
    WANG Q, ZHAO Q J. Unsteady aerodynamic charac-teristics investigation of rotor airfoil under variational freestream velocity[J]. Aerospace Science and Technology, 2016, 58: 82–91. doi: 10.1016/j.ast.2016.08.001
    [35]
    林永峰, 黄建萍, 黄水林, 等. 直升机旋翼翼型动态失速特性试验研究[J]. 航空科学技术, 2012, 23(4): 25–28.

    LIN Y F, HUANG J P, HUANG S L, et al. Experimental investigation of rotor airfoil dynamic stall characteristics[J]. Aeronautical Science & Technology, 2012, 23(4): 25–28.
    [36]
    WANG Q, ZHAO Q J, WU Q. Aerodynamic shape optimization for alleviating dynamic stall characteristics of helicopter rotor airfoil[J]. Chinese Journal of Aeronautics, 2015, 28(2): 346–356. doi: 10.1016/j.cja.2014.12.033
    [37]
    REINERT T, FLEMMING R J, NARDUCCI R, et al. Oscillating airfoil icing tests in the NASA Glenn research center icing research tunnel[C]//Proc of the SAE Technical Paper Series, 400 Commonwealth Drive. 2011. doi: 10.4271/2011-38-0016
    [38]
    PAPE A L, PAILHAS G, DAVID F, et al. Extensive wind tunnel tests measurements of dynamic stall phenomenon for the OA209 airfoil including 3D effects[C]//Proc of the 33st European Rotor Forum. 2007.
    [39]
    惠增宏, 谭森林, 高永卫, 等. 一种低速旋翼翼型动态试验驱动机构: 中国, CN109752164B[P]. 2019-11-01.

    HUI Z H, TAN S L, GAO Y W, et al. Low-speed rotor-wing type dynamic test driving mechanism: China, CN10975-2164B[P]. 2019-11-01.
    [40]
    张卫国, 李国强, 孔鹏, 等. 一种翼型两自由度动态风洞试验装置: 中国, CN108844711A[P]. 2018-11-20.

    ZHANG W G, LI G Q, KONG P, et al. Airfoil profile two-freedom dynamic wind tunnel testing device: China, CN108844711A[P]. 2018-11-20.
    [41]
    张卫国, 李国强, 康洪铭, 等. 一种翼型高速风洞动态试验装置: 中国, CN109632249A[P]. 2019-04-16.

    ZHANG W G, LI G Q, KANG H M, et al. Airfoil high speed wind tunnel dynamic test device: China, CN-109632249A[P]. 2019-04-16.
    [42]
    李国强, 赵亮亮, 张卫国, 等. 一种翼型高速风洞双天平动态测力装置及方法: 中国, CN109682568A[P]. 2019-04-26.

    LI G Q, ZHAO L L, ZHANG W G, et al. Airfoil high-speed wind-tunnel double-balance dynamic force measuring device and method: China, CN109682568A[P]. 2019-04-26.
    [43]
    WANG X, WANG X N, REN X B, et al. Effects of tube system and data correction for fluctuating pressure test in wind tunnel[J]. Chinese Journal of Aeronautics, 2018, 31(4): 710–718. doi: 10.1016/j.cja.2018.01.021
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(22)  / Tables(6)

    Article Metrics

    Article views (291) PDF downloads(70) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return