Volume 37 Issue 2
Apr.  2023
Turn off MathJax
Article Contents
ZHANG H Y, WANG P, LIU Y Z. Acoustic field modeling and measurement of the parallel graphene based thermo-acoustic actuator[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(2): 94-104 doi: 10.11729/syltlx20210130
Citation: ZHANG H Y, WANG P, LIU Y Z. Acoustic field modeling and measurement of the parallel graphene based thermo-acoustic actuator[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(2): 94-104 doi: 10.11729/syltlx20210130

Acoustic field modeling and measurement of the parallel graphene based thermo-acoustic actuator

doi: 10.11729/syltlx20210130
  • Received Date: 2021-11-15
  • Accepted Date: 2022-03-07
  • Rev Recd Date: 2021-12-21
  • Available Online: 2023-06-09
  • Publish Date: 2023-04-25
  • The active flow control technology is an effective method to improve the aerodynamic characteristics of aerospace vehicles, in which actuators are the core of these control technologies such as plasma actuator, synthetic jet actuator and oscillating jet actuator. Present study proposes a parallel graphene actuator based on the thermo-acoustic effect. The actuator has the advantages of simple structure, low input power, wide controlling frequency and strong structural adaptability. It can adapt to various complex curved wall installations of aircraft environment and variable working conditions, resulting in a good application prospect. Specifically, the thermo-acoustic actuator utilizes the extremely low specific heat capacity and high coefficient of heat conductivity characteristics of graphene materials. Through the Joule heating principle, the graphene films can radiate a periodic sound field to the surrounding air for acoustic excitation control. According to this principle, firstly this paper uses the thermo-acoustic theory to model the sound field of the graphene actuator, adds the principle of combined sound source superposition to the modeling, and optimizes the computation method of acoustic wave phase difference and sound field directivity. Secondly, it improves the circuit connection method of the parallel graphene actuator films so that it effectively increases the sound pressure amplitude of the sound field. Finally, by establishing a sound pressure test platform in a semi-anechoic chamber room and analyzing the influence of input power, frequency, test distance and other factors on output sound pressure, this paper studies and verifies the sound field of the parallel graphene thermo-acoustic actuator.
  • loading
  • [1]
    中国科学院. 中国学科发展战略-新型飞行器中的关键力学问题[M]. 北京: 科学出版社, 2018.
    [2]
    LIN J C. Review of research on low-profile vortex generators to control boundary-layer separation[J]. Progress in Aerospace Sciences, 2002, 38(4-5): 389–420. doi: 10.1016/S0376-0421(02)00010-6
    [3]
    JIRASEK A. Vortex-generator model and its application to flow control[J]. Journal of Aircraft, 2005, 42(6): 1486–1491. doi: 10.2514/1.12220
    [4]
    ANUAR M M, NORDIN N, SHARIFF M Z F, et al. Effect of Employing Vortex Generator on Curve Diffuser Performance[J]. Journal of Advanced Mechanical Engineering Applications, 2021, 2(2): 53–60.
    [5]
    WANG J J, LI Y C, CHOI K S. Gurney flap—Lift enhancement, mechanisms and applications[J]. Progress in Aerospace Sciences, 2008, 44(1): 22–47. doi: 10.1016/j.paerosci.2007.10.001
    [6]
    MOUSAVI M, MASDARI M, TAHANI M. Power performance enhancement of vertical axis wind turbines by a novel gurney flap design[J]. Aircraft Engineering and Aerospace Technology, 2021. doi: 10.1108/aeat-02-2021-0052
    [7]
    KUMAR V, ALVI F. Efficient control of separation using microjets[C]//Proc of the 35th AIAA Fluid Dynamics Conference and Exhibit. 2005: 4879. doi: 10.2514/6.2005-4879
    [8]
    王林, 罗振兵, 夏智勋, 等. 高速流场主动流动控制激励器研究进展[J]. 中国科学(技术科学), 2012, 42(10): 1103–1119. doi: 10.1360/ze2012-42-10-1103

    WANG L, LUO Z B, XIA Z X, et al. Review of actuators for high speed active flow control[J]. SCIENTIA SINICA Technologica, 2012, 42(10): 1103–1119. doi: 10.1360/ze2012-42-10-1103
    [9]
    MOREAU E. Airflow control by non-thermal plasma actuators[J]. Journal of Physics D: Applied Physics, 2007, 40(3): 605–636. doi: 10.1088/0022-3727/40/3/s01
    [10]
    ZHU Z H, FRADERA-SOLER P, JO W, et al. Numerical simulation of the flow around a square cylinder under plasma actuator control[J]. Physics of Fluids, 2021, 33(12): 123611. doi: 10.1063/5.0072081
    [11]
    罗振兵, 夏智勋. 合成射流技术及其在流动控制中应用的进展[J]. 力学进展, 2005, 35(2): 221–234. doi: 10.3321/j.issn:1000-0992.2005.02.009

    LUO Z B, XIA Z X. Advances in synthetic jet technology and applications in flow control[J]. Advances in Mechanics, 2005, 35(2): 221–234. doi: 10.3321/j.issn:1000-0992.2005.02.009
    [12]
    PALUMBO A, DE LUCA L. Experimental and CFD characterization of a double-orifice synthetic jet actuator for flow control[J]. Actuators, 2021, 10(12): 326. doi: 10.3390/act10120326
    [13]
    GREGORY J W, GNANAMANICKAM E P, SULLIVAN J P, et al. Variable-frequency fluidic oscillator driven by a piezoelectric bender[J]. AIAA Journal, 2009, 47(11): 2717–2725. doi: 10.2514/1.44078
    [14]
    KARA K, KIM D, MORRIS P J. Flow-separation control using sweeping jet actuator[J]. AIAA Journal, 2018, 56(11): 4604–4613. doi: 10.2514/1.J056715
    [15]
    ZAMAN K B M Q, BAR-SEVER A, MANGALAM S M. Effect of acoustic excitation on the flow over a low- Re airfoil[J]. Journal of Fluid Mechanics, 1987, 182: 127. doi: 10.1017/s0022112087002271
    [16]
    NISHIOKA M, ASAI M, YOSHIDA S. Control of flow separation by acoustic excitation[J]. AIAA Journal, 1990, 28(11): 1909–1915. doi: 10.2514/3.10498
    [17]
    KURELEK J W, KOTSONIS M, YARUSEVYCH S. Transition in a separation bubble under tonal and broadband acoustic excitation[J]. Journal of Fluid Mechanics, 2018, 853: 1–36. doi: 10.1017/jfm.2018.546
    [18]
    ANDAN A D, LEE D J. Effect of external acoustic excitation on NACA0015 discrete tonal noise[J]. Applied Acoustics, 2018, 141: 374–381. doi: 10.1016/j.apacoust.2018.07.030
    [19]
    BERNARDINI C, BENTON S I, BONS J P. Understanding leading edge stall physics by acoustic excitation[C]//Proc of the 52nd Aerospace Sciences Meeting. 2014: 1125. doi: 10.2514/6.2014-1125
    [20]
    朱奇亮, 高永卫, 叶正寅. 不同声激励方式对多段翼型升力特性的影响[J]. 航空工程进展, 2013, 4(2): 232–236. doi: 10.3969/j.issn.1674-8190.2013.02.016

    ZHU Q L, GAO Y W, YE Z Y. Influence of the different acoustic excitations on lift characteristic of a multi-element airfoil[J]. Advances in Aeronautical Science and Engineering, 2013, 4(2): 232–236. doi: 10.3969/j.issn.1674-8190.2013.02.016
    [21]
    WANG Y J, HE Z, LIU D W. Effect of acoustic excitation on flow asymmetry over slender body at high angles of attack[J]. Procedia Engineering, 2012, 31: 182–186. doi: 10.1016/j.proeng.2012.01.1010
    [22]
    TIAN H, XIE D, YANG Y, et al. Static behavior of a graphene-based sound-emitting device[J]. Nanoscale, 2012, 4(11): 3345–3349. doi: 10.1039/c2nr30417a
    [23]
    TIAN H, REN T L, XIE D, et al. Graphene-on-paper sound source devices[J]. ACS Nano, 2011, 5(6): 4878–4885. doi: 10.1021/nn2009535
    [24]
    卞安华. 石墨烯薄膜声学特性及主动控制研究[D]. 苏州: 苏州大学, 2017.

    BIAN A H. Study on acoustic characteristics of graphene film and its application in active noise control[D]. Suzhou: Soochow University, 2017.
    [25]
    WANG Z G, CHEN Y F, LI P J, et al. Flexible graphene-based electroluminescent devices[J]. ACS Nano, 2011, 5(9): 7149–7154. doi: 10.1021/nn2018649
    [26]
    邢倩荷. 石墨烯薄膜扬声器热声特性分析及应用[D]. 苏州: 苏州大学, 2018.

    XING Q H. Analysis of thermoacoustic characteristics of graphene film loudspeakers and its application[D]. Suzhou: Soochow University, 2018.
    [27]
    DASCHEWSKI M, BOEHM R, PRAGER J, et al. Physics of thermo-acoustic sound generation[J]. Journal of Applied Physics, 2013, 114(11): 114903. doi: 10.1063/1.4821121
    [28]
    杜功焕, 朱哲民, 龚秀芬. 声学基础[M]. 3版. 南京: 南京大学出版社, 2012.
    [29]
    HU H P, ZHU T, XU J. Model for thermoacoustic emission from solids[J]. Applied Physics Letters, 2010, 96(21): 214101. doi: 10.1063/1.3435429
    [30]
    黄伟. 基于热声效应的石墨烯扬声器研究[D]. 杭州: 浙江大学, 2020.

    HUANG W. Research on the graphene loudspeakers based on thermoacoustic effect[D]. Hangzhou: Zhejiang University, 2020.
    [31]
    SUK J W, KIRK K, HAO Y F, et al. Thermoacoustic sound generation from monolayer graphene for transparent and flexible sound sources[J]. Advanced Materials, 2012, 24(47): 6342–6347. doi: 10.1002/adma.201201782
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article Metrics

    Article views (161) PDF downloads(15) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return