Volume 36 Issue 3
Jul.  2022
Turn off MathJax
Article Contents
ZHOU H,LI Y,LAN S W,et al. Predict the mass distribution of hypervelocity impact debris using deep learning[J]. Journal of Experiments in Fluid Mechanics, 2022,36(3):73-78. doi: 10.11729/syltlx20210125
Citation: ZHOU H,LI Y,LAN S W,et al. Predict the mass distribution of hypervelocity impact debris using deep learning[J]. Journal of Experiments in Fluid Mechanics, 2022,36(3):73-78. doi: 10.11729/syltlx20210125

Predict the mass distribution of hypervelocity impact debris using deep learning

doi: 10.11729/syltlx20210125
  • Received Date: 2021-10-12
  • Accepted Date: 2022-03-14
  • Rev Recd Date: 2022-03-13
  • Available Online: 2022-04-19
  • Publish Date: 2022-07-04
  • Efficiently predicting the evolution of hypervelocity impact(HVI) debris is crucial in the design of spacecraft protective structures. To this end two deep learning models, namely the de-convolutional architecture and the multi-layer perceptron architecture, are compared. Training data come from smoothed particle hydrodynamics (SPH) simulations. Deep learning models include four controllable labels, namely the projectile velocity (range 3–8 km/s) , the radius (range 2–8 mm), target plate thickness (range 1–4 mm) and time instant (range 1–12 μs). It is found that the two architectures are both accurate if the labels are confined within the range of training data. Out of the training data labels range, the de-convolutional architecture extrapolates poorly, though it can capture the granular property of the HVI debris. At the same time, the multi-layer perceptron architecture homogenizes the local mass distribution in the HVI debris and achieves much better extrapolation capability. By learning the mass distribution between time 1 μs and 12 μs, the multi-layer perceptron architecture can predict the mass distribution at time 24 μs with reasonable accuracy. Prediction time of the de-convolutional architecture is several milliseconds and prediction time of the multi-layer perceptron architecture is several seconds.
  • loading
  • [1]
    WHIPPLE F L. Meteorites and space travel[J]. The Astronomical Journal,1947,52:132-137. doi: 10.1086/106009
    [2]
    郑建东,龚自正,席爽,等. 基于弹丸最大碎片理论的碎片云模型[J]. 航天器环境工程,2012,29(4):397-400. doi: 10.3969/j.issn.1673-1379.2012.04.007

    ZHENG J D,GONG Z Z,XI S,et al. A new debris cloud model based on the largest fragment theory[J]. Spacecraft Environment Engineering,2012,29(4):397-400. doi: 10.3969/j.issn.1673-1379.2012.04.007
    [3]
    邸德宁,陈小伟,文肯,等. 超高速碰撞产生的碎片云研究进展[J]. 兵工学报,2018,39(10):2016-2047. doi: 10.3969/j.issn.1000-1093.2018.10.018

    DI D N,CHEN X W,WEN K,et al. A review on the study of debris cloud produced by normal hypervelocity impact upon a thin plate[J]. Acta Armamentarii,2018,39(10):2016-2047. doi: 10.3969/j.issn.1000-1093.2018.10.018
    [4]
    SCHÄFER F K. An engineering fragmentation model for the impact of spherical projectiles on thin metallic plates[J]. International Journal of Impact Engineering,2006,33(1-12):745-762. doi: 10.1016/j.ijimpeng.2006.09.067
    [5]
    HUANG J,MA Z X,REN L S,et al. A new engineering model of debris cloud produced by hypervelocity impact[J]. International Journal of Impact Engineering,2013,56:32-39. doi: 10.1016/j.ijimpeng.2012.07.003
    [6]
    MA Z X, HUANG J, LIANG S C. The technology of modeling debris cloud produced by hypervelocity impact[C]//Proc of the 6th European Conference on Space Debris. 2013.
    [7]
    RYAN S,THALER S,KANDANAARACHCHI S. Machine learning methods for predicting the outcome of hypervelo-city impact events[J]. Expert Systems With Applications,2016,45:23-39. doi: 10.1016/j.eswa.2015.09.038
    [8]
    RYAN S,KANDANAARACHCHI S,SMITH-MILES K. Support vector machines for characterising Whipple shield performance[J]. Procedia Engineering,2015,103:522-529. doi: 10.1016/j.proeng.2015.04.068
    [9]
    RYAN S,THALER S. Artificial neural networks for characterising Whipple shield performance[J]. International Journal of Impact Engineering,2013,56:61-70. doi: 10.1016/j.ijimpeng.2012.10.011
    [10]
    HOSSEINI M,ABBAS H. Neural network approach for estimation of hole-diameter in thin plates perforated by sphe-rical projectiles[J]. Thin-Walled Structures,2008,46(6):592-601. doi: 10.1016/j.tws.2008.01.012
    [11]
    刘源,庞宝君. 基于贝叶斯正则化BP神经网络的铝平板超高速撞击损伤模式识别[J]. 振动与冲击,2016,35(12):22-27. doi: 10.13465/j.cnki.jvs.2016.12.004

    LIU Y,PANG B J. Hypervelocity impact damage pattern recognition on aluminum plates based on Bayesian Regula-rization BP neural network[J]. Journal of Vibration and Shock,2016,35(12):22-27. doi: 10.13465/j.cnki.jvs.2016.12.004
    [12]
    KINGMA D P, WELLING M. Auto-encoding variational Bayes[J]. arXiv preprint: 1312.6114, 2013. doi: 10.48550/arXiv.1312.6114
    [13]
    SOHN K, LEE H L, YAN X C. Learning structured output representation using deep conditional generative models[C]//Proc of the International Conference on Neural Information Processing Systems. 2015.
    [14]
    周浩,李毅,张浩,等. 基于CVAE的超高速碰撞碎片云运动过程的快速预测技术[J]. 实验流体力学,2021,35(5):40-46. doi: 10.11729/syltlx20200058

    ZHOU H,LI Y,ZHANG H,et al. Evolution prediction of HVI debris based on CVAE model[J]. Journal of Experiments in Fluid Mechanics,2021,35(5):40-46. doi: 10.11729/syltlx20200058
    [15]
    李毅, 柳森, 陈鸿, 等. 并行SPH仿真软件PTS的开发与应用[C]//第二届全国超高速碰撞学术会议论文集. 2016.

    LI Y, LIU S, CHEN H, et al. Develop and application of the parallel SPH software PTS[C]//Proc of the 2nd National Symposium on HVI. 2016.
    [16]
    BHOWMIK D, GAO S, YOUNG M T, et al. Deep clustering of protein folding simulations[J]. BMC Bioinformatics, 2018, 19(Suppl 18): 484. doi: 10.1186/s12859-018-2507-5
    [17]
    IOFFE S, SZEGEDY C. Batch normalization: accelerating deep network training by reducing internal covariate shift[C]// Proceedings of the 32th International Conference on Machine Learning. 2015.
    [18]
    HORNIK K,STINCHCOMBE M,WHITE H. Multilayer feed-forward networks are universal approximators[J]. Neural Networks,1989,2(5):359-366. doi: 10.1016/0893-6080(89)90020-8
    [19]
    NITISH S,HINTON G,KRIZHEVSKY A,et al. Dropout: a simple way to prevent neural networks from overfitting[J]. Journal of Machine Learning Research,2014,15:1929-1958.
    [20]
    BAKER N,LU H J,ERLIKHMAN G,et al. Deep convolu-tional networks do not classify based on global object shape[J]. PLoS Computational Biology,2018,14(12):e1006613. doi: 10.1371/journal.pcbi.1006613
    [21]
    GEIRHOS R, RUBISCH P, MICHAELIS C, et al. ImageNet-trained CNNs are biased towards texture; increas-ing shape bias improves accuracy and robustness[C]// Proc of the International Conference on Learning Representations. 2019. doi: 10.48550/arXiv.1811.12231
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(1)

    Article Metrics

    Article views (1639) PDF downloads(72) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return