Volume 36 Issue 2
May  2022
Turn off MathJax
Article Contents
YI W T,ZHU Y W,LIU W Z. Frontiers and developments of ultra-high time and space resolution magnetic nanometer temperature measurement[J]. Journal of Experiments in Fluid Mechanics, 2022,36(2):1-8. doi: 10.11729/syltlx20210107
Citation: YI W T,ZHU Y W,LIU W Z. Frontiers and developments of ultra-high time and space resolution magnetic nanometer temperature measurement[J]. Journal of Experiments in Fluid Mechanics, 2022,36(2):1-8. doi: 10.11729/syltlx20210107

Frontiers and developments of ultra-high time and space resolution magnetic nanometer temperature measurement

doi: 10.11729/syltlx20210107
  • Received Date: 2021-08-26
  • Accepted Date: 2021-12-09
  • Rev Recd Date: 2021-11-28
  • Available Online: 2022-03-10
  • Publish Date: 2022-05-19
  • The frontier demand for remote and rapid temperature measurement under special conditions poses a challenge to the classical temperature sensing technology. The temperature measurement method based on the principle of magnetism has great potential in these fields. Magnetic nanoparticles have a significant and efficient temperature-to-magnetic field conversion effect and a nanosecond response time, which can realize remote, high-precision and rapid temperature measurement. This article reviews the current development status of the magnetic nanometer temperature measurement technology at home and abroad, including several different physical models and simulation analysis methods for magnetic nanometer temperature measurement, as well as the corresponding temperature information extraction method and measurement system design. The main principle of the remote temperature measurement method based on magnetic nanoparticles is to measure the magnetic susceptibility or magnetization signal, and to obtain temperature information through the Langevin equation magnetic model. At present, multiple prototype experiments have proved the feasibility of the magnetic nanometer temperature measurement method under remote or ultrafast constrained conditions. The magnetic nanothermometer provides a new measurement tool for temperature measurement under extreme conditions such as junction temperature measurement of high-power chips, transient temperature measurement, remote temperature measurement through metal, and temperature imaging downstream of the transition point in a super wind tunnel.
  • loading
  • [1]
    SOULEN R J,RUSBY R L,VECHTEN D. A self-calibrating rhodium-iron resistive SQUID thermometer for the range below 0.5 K[J]. Journal of Low Temperature Physics,1980,40(5-6):553-569. doi: 10.1007/BF00119524
    [2]
    KIRSTE A,ENGERT J. A SQUID-based primary noise ther-mometer for low-temperature metrology[J]. Philosophical Transactions Series A,Mathematical,Physical,and Engineering Sciences,2016,374(2064):20150050. doi: 10.1098/rsta.2015.0050
    [3]
    GAO Y H,BANDO Y. Carbon nanothermometer containing gallium[J]. Nature,2002,415:599. doi: 10.1038/415599a
    [4]
    谢志刚,韩立,凌勇,等. 用扫描热显微镜研究材料表面微区热导分布[J]. 电子显微学报,2000,19(5):717-722. doi: 10.3969/j.issn.1000-6281.2000.05.009

    XIE Z G,HAN L,LING Y,et al. Mapping local thermal conductivity by scanning thermal microscopy[J]. Journal of Chinese Electron Microscopy Society,2000,19(5):717-722. doi: 10.3969/j.issn.1000-6281.2000.05.009
    [5]
    ZHOU J J,DEL ROSAL B,JAQUE D,et al. Advances and challenges for fluorescence nanothermometry[J]. Nature Methods,2020,17(10):967-980. doi: 10.1038/s41592-020-0957-y
    [6]
    JAQUE D,DEL ROSAL B,RODRÍGUEZ E M,et al. Fluorescent nanothermometers for intracellular thermal sensing[J]. Nanomedicine(London, England),2014,9(7):1047-1062. doi: 10.2217/nnm.14.59
    [7]
    GAO H,KAM C,CHOU T Y,et al. A simple yet effective AIE-based fluorescent nano-thermometer for temperature mapping in living cells using fluorescence lifetime imaging microscopy[J]. Nanoscale Horizons,2020,5(3):488-494. doi: 10.1039/c9nh00693a
    [8]
    LIU C F,LEONG W H,XIA K W,et al. Ultra-sensitive hybrid diamond nanothermometer[J]. National Science Review,2020,8(5):nwaa194. doi: 10.1093/nsr/nwaa194
    [9]
    WEAVER J B,RAUWERDINK A M,HANSEN E W. Magnetic nanoparticle temperature estimation[J]. Medical Physics,2009,36(5):1822-1829. doi: 10.1118/1.3106342
    [10]
    RAUWERDINK A M,HANSEN E W,WEAVER J B. Nanoparticle temperature estimation in combined ac and dc magnetic fields[J]. Physics in Medicine and Biology,2009,54(19):L51-L55. doi: 10.1088/0031-9155/54/19/L01
    [11]
    余巧灵. 基于磁性纳米粒子的燃料电池温度检测[D]. 武汉: 华中科技大学, 2018.

    YU Q L. Temperature measurement inside fuel cell based on magnetic nanoparticles[D]. Wuhan: Huazhong University of Science and Technology, 2018. doi: 10.7666/d.D01545055
    [12]
    KAISER R,MISKOLCZY G. Magnetic properties of stable dispersions of subdomain magnetite particles[J]. Journal of Applied Physics,1970,41(3):1064-1072. doi: 10.1063/1.1658812
    [13]
    LAK A,LUDWIG F,SCHOLTYSSEK J M,et al. Size distribution and magnetization optimization of single-core iron oxide nanoparticles by exploiting design of experiment methodology[J]. IEEE Transactions on Magnetics,2013,49(1):201-207. doi: 10.1109/TMAG.2012.2224325
    [14]
    LUDWIG F,EBERBECK D,LÖWA N,et al. Characteri-zation of magnetic nanoparticle systems with respect to their magnetic particle imaging performance[J]. Biomedizinische Technik Biomedical Engineering,2013,58(6):535-545. doi: 10.1515/bmt-2013-0013
    [15]
    LIU W Z,ZHOU M,KONG L. Estimation of the size distri-bution of magnetic nanoparticles using modified magnetiza-tion curves[J]. Measurement Science and Technology,2009,20(12):125802. doi: 10.1088/0957-0233/20/12/125802
    [16]
    钟景. 磁纳米温度测量理论与方法研究[D]. 武汉: 华中科技大学, 2014.

    ZHONG J. Study of theory and method for temperature probing using magnetic nanoparticles[D]. Wuhan: Huazhong University of Science and Technology, 2014.doi: 10.7666/d.D609033
    [17]
    ZHONG J,LIU W Z,DU Z Z,et al. A noninvasive, remote and precise method for temperature and concentration esti-mation using magnetic nanoparticles[J]. Nanotechnology,2012,23(7):075703. doi: 10.1088/0957-4484/23/7/075703
    [18]
    ZHONG J,LIU W Z,KONG L,et al. A new approach for highly accurate, remote temperature probing using magnetic nanoparticles[J]. Scientific Reports,2014,4:6338. doi: 10.1038/srep06338
    [19]
    王丹丹. 磁纳米温度计关键技术研究[D]. 郑州: 郑州轻工业大学, 2021.

    WANG D D. Research on key technologies of magnetic nano-particles thermometer[D]. Zhengzhou: Zhengzhou University of Light Industry, 2021.doi: 10.27469/d.cnki.gzzqc.2021.000016
    [20]
    ZHONG J,LIU W Z,JIANG L,et al. Real-time magnetic nanothermometry: the use of magnetization of magnetic nanoparticles assessed under low frequency triangle-wave magnetic fields[J]. The Review of Scientific Instruments,2014,85(9):094905. doi: 10.1063/1.4896121
    [21]
    何乐. 时变磁场激励的磁纳米温度测量方法研究[D]. 武汉: 华中科技大学, 2016.

    HE L. Study of magnetic nanothemometer excited by time-varying magnetic field[D]. Wuhan: Huazhong University of Science and Technology, 2016. doi: 10.7666/d.D01077937
    [22]
    GUO S L,LIU J,DU Z Z,et al. Improving magnetic nanothermometry accuracy through mixing-frequency excitation[J]. The Review of Scientific Instruments,2021,92(2):024901. doi: 10.1063/5.0038138
    [23]
    孙毅. 磁纳米温度信息测量关键技术研究[D]. 郑州: 郑州轻工业大学, 2020.

    SUN Y. Research on key technologies of temperature measurement using magnetic nanoparticles[D]. Zhengzhou: Zhengzhou University of Light Industry, 2020. doi: 10.27469/d.cnki.gzzqc.2020.000021
    [24]
    BROWN R W, CHENG Y-C N, MARK HAACKE E, et al. Magnetic resonance imaging: physical principles and sequence design[M]. Hoboken, New Jersey: John Wiley & Sons, 2014. doi: 10.1002/9781118633953
    [25]
    ZHANG Y P,GUO S L,ZHANG P,et al. Iron oxide magnetic nanoparticles based low-field MR thermometry[J]. Nanotechnology,2020,31(34):345101. doi: 10.1088/1361-6528/ab932b
    [26]
    NARENDRAN N,GU Y. Life of LED-based white light sources[J]. Journal of Display Technology,2005,1(1):167-171. doi: 10.1109/JDT.2005.852510
    [27]
    余彬海,王垚浩. 结温与热阻制约大功率LED发展[J]. 发光学报,2005,26(6):761-766. doi: 10.3321/j.issn:1000-7032.2005.06.014

    YU B H,WANG Y H. Junction temperature and thermal resistance restrict the developing of high-power LED[J]. Chinese Journal of Luminescence,2005,26(6):761-766. doi: 10.3321/j.issn:1000-7032.2005.06.014
    [28]
    杜中州. 磁纳米温度测量关键技术及其应用研究[D]. 武汉: 华中科技大学, 2015.

    DU Z Z. Research on key technologies of temperature measurement using magnetic nanoparticles and its application[D]. Wuhan: Huazhong University of Science and Technology, 2015.
    [29]
    XU W B,LIU W Z,ZHANG P. Nanosecond-resolved temperature measurements using magnetic nanoparticles[J]. Review of Scientific Instruments,2016,87(5):054902. doi: 10.1063/1.4948737
    [30]
    XU W B, LIU W Z, ZHANG P, et al. Magnetic nanoparticle temperature estimation: the improvement of measurement speed[C]//Proc of the 2015 5th International Workshop on Magnetic Particle Imaging(IWMPI). 2015. doi: 10.1109/IWMPI.2015.7107080
    [31]
    GUO S L,LIU W Z,CHENG J J. A penetrating remote temperature measurement device based on magnetic nanoparticles for measuring the internal temperatures of metal containers[J]. Measurement Science and Technology,2019,30(5):055101. doi: 10.1088/1361-6501/aaff3f
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article Metrics

    Article views (2578) PDF downloads(80) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return