Volume 36 Issue 5
Oct.  2022
Turn off MathJax
Article Contents
JIN Y Z,ZHENG B R,YU M H,et al. Experimental study on flow control of asymmetric vortex over the leeward region of the head of the slender body by sliding discharge plasma actuation[J]. Journal of Experiments in Fluid Mechanics, 2022,36(5):43-51. doi: 10.11729/syltlx20210101
Citation: JIN Y Z,ZHENG B R,YU M H,et al. Experimental study on flow control of asymmetric vortex over the leeward region of the head of the slender body by sliding discharge plasma actuation[J]. Journal of Experiments in Fluid Mechanics, 2022,36(5):43-51. doi: 10.11729/syltlx20210101

Experimental study on flow control of asymmetric vortex over the leeward region of the head of the slender body by sliding discharge plasma actuation

doi: 10.11729/syltlx20210101
  • Received Date: 2021-08-23
  • Accepted Date: 2021-11-09
  • Rev Recd Date: 2021-09-25
  • Available Online: 2022-02-17
  • Publish Date: 2022-10-01
  • When the aircraft flies at a high angle of attack, the flow field on the leeward surface of the slender body evolves in a complicated manner, and asymmetric vortices appear, generating random lateral forces, which greatly affect the maneuverability and agility of the aircraft. In order to solve this problem, a sliding discharge plasma actuator with an along-stream layout was used to conduct wind tunnel experiments on a slender body model, combined with pressure measurement and particle image velocimetry(PIV). The experimental results show that the actuation voltage of 10 kV is the threshold voltage at which the flow control starts to take effect. When the velocity of the incoming flow is 10 m/s(Re=0.8×105), the angle of attack is 45°, and the actuation voltage is 16 kV, the best flow control effect can be achieved at the normalized pulse frequency of 1.96, the lateral force coefficient can be reduced by 83.48%. However, as the flow velocity increases, the flow control effect becomes weaker gradually and is expected to disappear at 26 m/s.
  • loading
  • [1]
    李斌斌,姜裕标,顾蕴松,等. 合成射流大攻角非对称涡控制的试验研究[J]. 航空学报,2015,36(3):764-771. doi: 10.7527/S1000-6893.2014.0184

    LI B B,JIANG Y B,GU Y S,et al. Experimental study of asymmetric vortex control at high angle of attack with synthetic jet[J]. Acta Aeronautica et Astronautica Sinica,2015,36(3):764-771. doi: 10.7527/S1000-6893.2014.0184
    [2]
    徐思文,邓学蓥,王延奎. 攻角拉起时前体非对称涡诱导机翼摇滚运动[J]. 北京航空航天大学学报,2015,41(11):2078-2084. doi: 10.13700/j.bh.1001-5965.2014.0707

    XU S W,DENG X Y,WANG Y K. Wing rock motion induced by forebody asymmetric vortices in pitch-up[J]. Journal of Beijing University of Aeronautics and Astronautics,2015,41(11):2078-2084. doi: 10.13700/j.bh.1001-5965.2014.0707
    [3]
    WYSOCKI O,SCHÜLEIN E. Experimental investigations on the phantom yaw effect on a maneuvering slender body[J]. Journal of Spacecraft and Rockets,2015,52(1):264-274. doi: 10.2514/1.a32885
    [4]
    WU G X,DENG X Y,WANG Y K. Effects of tip perturbation on asymmetric vortex flow over slender delta wings[J]. AIAA Journal,2014,52(4):886-891. doi: 10.2514/1.J052589
    [5]
    BRIDGES D H. Toward a theoretical description of vortex wake asymmetry[J]. Progress in Aerospace Sciences,2010,46(2-3):62-80. doi: 10.1016/j.paerosci.2009.11.005
    [6]
    刘沛清,邓学蓥. 大迎角细长体绕流背涡结构与气动特性分析[J]. 力学学报,2002,34(2):248-255. doi: 10.3321/j.issn:0459-1879.2002.02.013

    LIU P Q,DENG X Y. Lee-side vortex structure and aerodynamic characteristics analysis over a slender cylinder at high incidence[J]. Acta Mechanica Sinica,2002,34(2):248-255. doi: 10.3321/j.issn:0459-1879.2002.02.013
    [7]
    刘沛清,邓学蓥,孔繁美. 绕细长旋成体非对称涡非定常性的实验研究[J]. 流体力学实验与测量,2002,16(4):39-46. doi: 10.3969/j.issn.1672-9897.2002.04.008

    LIU P Q,DENG X Y,KONG F M. Experimental investigation of asymmetry vortex unsteadiness over slender cylinders[J]. Experiments and Measurements in Fluid Mechanics,2002,16(4):39-46. doi: 10.3969/j.issn.1672-9897.2002.04.008
    [8]
    程克明,范召林,尹贵鲁. 大攻角流动非对称性成因与对策[J]. 南京航空航天大学学报,2002,34(1):17-21. doi: 10.3969/j.issn.1005-2615.2002.01.004

    CHENG K M,FAN Z L,YIN G L. On cause and research strategy of flow asymmetry in high-alpha flows[J]. Journal of Nanjing University of Aeronautics & Astronautics,2002,34(1):17-21. doi: 10.3969/j.issn.1005-2615.2002.01.004
    [9]
    邓学蓥,石伟,王延奎,等. 两类非对称涡流动所诱导的摇滚运动[J]. 气体物理,2016,1(1):13-24. doi: 10.19527/j.cnki.2096-1642.2016.01.005

    DENG X Y,SHI W,WANG Y K,et al. Wing rock motions induced by two kinds of asymmetric vortices flows[J]. Physics of Gases,2016,1(1):13-24. doi: 10.19527/j.cnki.2096-1642.2016.01.005
    [10]
    翟建,张伟伟,王焕玲. 大迎角前体涡控制方法综述[J]. 空气动力学学报,2017,35(3):354-367. doi: 10.7638/kqdlxxb-2017.0018

    ZHAI J,ZHANG W W,WANG H L. Reviews of forebody vortex control method at high angles of attack[J]. Acta Aerodynamica Sinica,2017,35(3):354-367. doi: 10.7638/kqdlxxb-2017.0018
    [11]
    兰子奇,史志伟,孙琪杰,等. AC-DBD等离子体激励对L形截面钝体风荷载减阻的实验研究[J]. 实验流体力学,2021,35(2):83-91. doi: 10.11729/syltlx20200095

    LAN Z Q,SHI Z W,SUN Q J,et al. Experimental study on drag reduction of L-shaped bluff body by AC-DBD plasma actuation[J]. Journal of Experiments in Fluid Mechanics,2021,35(2):83-91. doi: 10.11729/syltlx20200095
    [12]
    WANG J J,CHOI K S,FENG L H,et al. Recent developments in DBD plasma flow control[J]. Progress in Aerospace Sciences,2013,62:52-78. doi: 10.1016/j.paerosci.2013.05.003
    [13]
    孟宣市,郭志鑫,罗时钧,等. 细长圆锥前体非对称涡流场的等离子体控制[J]. 航空学报,2010,31(3):500-505.

    MENG X S,GUO Z X,LUO S J,et al. Control of asymmetric vortices over a slender conical forebody using plasma actuators[J]. Acta Aeronautica et Astronautica Sinica,2010,31(3):500-505.
    [14]
    MENG X S,LONG Y X,WANG J L,et al. Dynamics and control of the vortex flow behind a slender conical forebody by a pair of plasma actuators[J]. Physics of Fluids,2018,30(2):024101. doi: 10.1063/1.5005514
    [15]
    ZHENG B R,WANG Z Y,GAO C,et al. Computational analysis of conical forebody flow at high alpha with transitional model[J]. Journal of Aircraft,2015,52(1):357-366. doi: 10.2514/1.c032469
    [16]
    王健磊,孟宣市,李华星,等. 等离子体控制下前体分离涡的研究[J]. 空气动力学学报,2015,33(6):740-746. doi: 10.7638/kqdlxxb-2014.0053

    WANG J L,MENG X S,LI H X,et al. Study on forebody separation vortices using plasma actuations[J]. Acta Aerodynamica Sinica,2015,33(6):740-746. doi: 10.7638/kqdlxxb-2014.0053
    [17]
    LONG Y X,LI H X,MENG X S,et al. Influence of actuating position on asymmetric vortex control with nanosecond pulse DBD plasma actuators[J]. IEEE Transactions on Plasma Science,2016,44(11):2785-2795. doi: 10.1109/TPS.2016.2583543
    [18]
    WANG Q T,CHENG K M,GU Y S,et al. Continuous control of asymmetric forebody vortices in a bi-stable state[J]. Physics of Fluids,2018,30(2):024102. doi: 10.1063/1.5000006
    [19]
    ZHU Y D. Experimental investigations of the asymmetric vortex formation over a slender body of revolution at high angles of attack[J]. International Journal of Modern Physics B,2020,34(14n16):2040089. doi: 10.1142/s0217979220400895
    [20]
    周欲晓,顾蕴松. 非零侧滑角大迎角细长体侧向力控制规律实验研究[J]. 空气动力学学报,2014,32(3):383-387. doi: 10.7638/kqdlxxb-2012.0129

    ZHOU Y X,GU Y S. Proportional side force control of slender body at high angles of attack with non-zero sideslip angle[J]. Acta Aerodynamica Sinica,2014,32(3):383-387. doi: 10.7638/kqdlxxb-2012.0129
    [21]
    KOURTZANIDIS K,RAJA L L. Three-electrode sliding nanosecond dielectric barrier discharge actuator: modeling and physics[J]. AIAA Journal,2017,55(4):1393-1404. doi: 10.2514/1.j055473
    [22]
    SEKIMOTO S,NONOMURA T,FUJII K. Burst-mode frequency effects of dielectric barrier discharge plasma actuator for separation control[J]. AIAA Journal,2017,55(4):1385-1392. doi: 10.2514/1.j054678
    [23]
    DONG H,LI Z,GENG X,et al. Study of the airflow induced by a sliding discharge plasma actuator[J]. Modern Physics Letters B,2019,33(2):1950011. doi: 10.1142/s0217984919500118
    [24]
    ZHENG B R,XUE M,KE X Z,et al. Unsteady vortex structure induced by a trielectrode sliding discharge plasma actuator[J]. AIAA Journal,2018,57(1):467-471. doi: 10.2514/1.J057596
    [25]
    ZHENG B R,XUE M,GE C. Forebody asymmetric vortex control with extended dielectric barrier discharge plasma actuators[J]. Chinese Physics B,2020,29(6):064703. doi: 10.1088/1674-1056/ab8372
    [26]
    FAGLEY C,PORTER C,McLAUGHLIN T. Experimental closed-loop flow control of a von Kármán ogive at high incidence[J]. AIAA Journal,2014,52(12):2891-2898. doi: 10.2514/1.J053012
    [27]
    王彦植,陈方,刘洪,等. 高速流动PIV示踪粒子跟随响应特性实验研究[J]. 实验流体力学,2018,32(3):94-99. doi: 10.11729/syltlx20170160

    WANG Y Z,CHEN F,LIU H,et al. Experimental investigation on response characteristics of PIV tracer particles in high speed flow[J]. Journal of Experiments in Fluid Mechanics,2018,32(3):94-99. doi: 10.11729/syltlx20170160
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(2)

    Article Metrics

    Article views (367) PDF downloads(43) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return