Volume 36 Issue 4
Sep.  2022
Turn off MathJax
Article Contents
YANG W B,CHEN L,YAN B,et al. Transient velocity measurement of shear flow using Femtosecond Laser Electronic Excitation Tagging[J]. Journal of Experiments in Fluid Mechanics, 2022,36(4):94-102. doi: 10.11729/syltlx20210060
Citation: YANG W B,CHEN L,YAN B,et al. Transient velocity measurement of shear flow using Femtosecond Laser Electronic Excitation Tagging[J]. Journal of Experiments in Fluid Mechanics, 2022,36(4):94-102. doi: 10.11729/syltlx20210060

Transient velocity measurement of shear flow using Femtosecond Laser Electronic Excitation Tagging

doi: 10.11729/syltlx20210060
  • Received Date: 2021-06-11
  • Accepted Date: 2021-12-16
  • Rev Recd Date: 2021-07-28
  • Available Online: 2022-09-23
  • Publish Date: 2022-09-02
  • The measurement accuracy of flow velocity affects the prediction accuracy of aerodynamic performance of the aircraft. However, the current laser-spectroscopy-based velocity non-intrusive measurement technology can’t fully satisfy the requirement of high-precision flow velocity measurement, but the Femtosecond Laser Electronic Excitation Tagging (FLEET) measurement technology can. In this work, a FLEET system is developed based on a Ti:sapphire femtosecond laser. The electronic fluorescence of N2, which is excited by the femtosecond laser, is analyzed. Based on the FLEET system, transient velocities of the shear flow within 30 m/s to 170 m/s, which is adjusted by the gas pressure or volume flow rate in the high-speed channel, are measured. Finally, the effect of delay time on velocity measurement is investigated. With the delay time increasing, the fluorescence image widens due to the diffusion of plasma, and the signal to noise ratio decreases due to the fluorescence intensity decay. However, the velocities measured at different delay times are basically consistent. The results show that FLEET is practicable to measure the velocity of the shear flow.
  • loading
  • [1]
    杨富荣,陈力,闫博,等. 干涉瑞利散射测速技术在跨超声速风洞的湍流度测试应用研究[J]. 实验流体力学,2018,32(3):82-86. doi: 10.11729/syltlx20170103

    YANG F R,CHEN L,YAN B,et al. Measurement of turbulence velocity fluctuations in transonic wind tunnel using Interferometric Rayleigh Scattering diagnostic techni-que[J]. Journal of Experiments in Fluid Mechanics,2018,32(3):82-86. doi: 10.11729/syltlx20170103
    [2]
    易仕和,陈植,朱杨柱,等. (高)超声速流动试验技术及研究进展[J]. 航空学报,2015,36(1):98-119. doi: 10.7527/S1000-6893.2014.0230

    YI S H,CHEN Z,ZHU Y Z,et al. Progress on experimental techniques and studies of hypersonic/supersonic flows[J]. Acta Aeronautica et Astronautica Sinica,2015,36(1):98-119. doi: 10.7527/S1000-6893.2014.0230
    [3]
    EDWARDS M R, LIMBACH C, MILES R B, et al. Limitations on high-spatial resolution measurements of turbulence using femtosecond laser tagging[C]//Proc of the 53rd AIAA Aerospace Sciences Meeting. 2015. doi: 10.2514/6.2015-1219
    [4]
    刘洪,陈方,励孝杰,等. 高速复杂流动PIV技术研究实践与挑战[J]. 实验流体力学,2016,30(1):28-42. doi: 10.11729/syltlx20150069

    LIU H,CHEN F,LI X J,et al. Practices and challenges on PIV technology in high speed complex flows[J]. Journal of Experiments in Fluid Mechanics,2016,30(1):28-42. doi: 10.11729/syltlx20150069
    [5]
    李中华,李志辉,蒋新宇,等. NPLS流场测量技术在高超声速风洞中纳米粒子跟随性数值仿真[J]. 实验流体力学,2017,31(1):73-79. doi: 10.11729/syltlx20160094

    LI Z H,LI Z H,JIANG X Y,et al. Numerical simulation of nano-particle following features for NPLS measurement technology used in hypersonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics,2017,31(1):73-79. doi: 10.11729/syltlx20160094
    [6]
    PITZ R W,LAHR M D,DOUGLAS Z W,et al. Hydroxyl tagging velocimetry in a supersonic flow over a cavity[J]. Applied Optics,2005,44(31):6692-6700. doi: 10.1364/ao.44.006692
    [7]
    SÁNCHEZ-GONZÁLEZ R,SRINIVASAN R,BOWERSOX R D W,et al. Simultaneous velocity and temperature measurements in gaseous flow fields using the VENOM technique[J]. Optics Letters,2011,36(2):196-198. doi: 10.1364/OL.36.000196
    [8]
    CHEN L,YANG F R,SU T,et al. High sampling-rate measurement of turbulence velocity fluctuations in Mach 1.8 Laval jet using interferometric Rayleigh scattering[J]. Chinese Physics B,2017,26(2):025205. doi: 10.1088/1674-1056/26/2/025205
    [9]
    MICHAEL J B,EDWARDS M R,DOGARIU A,et al. Femtosecond laser electronic excitation tagging for quan-titative velocity imaging in air[J]. Applied Optics,2011,50(26):5158-5162. doi: 10.1364/AO.50.005158
    [10]
    EDWARDS M R. Femtosecond laser electronic tagging[D]. Princeton: Princeton University, 2012.
    [11]
    CALVERT N D. Femtosecond Laser Electronic Excitation Tagging for aerodynamic and thermodynamic measurements [D]. Princeton: Princeton University, 2016.
    [12]
    BURNS R, DANEHY P M, JONES S B, et al. Application of FLEET velocimetry in the NASA langley 0.3-meter transonic cryogenic tunnel[C]//Proc of the 31st AIAA Ae-rodynamic Measurement Technology and Ground Testing Conference. 2015. doi: 10.2514/6.2015-2566
    [13]
    BURNS R, DANEHY P, PETERS C J. Multiparameter flowfield measurements in high-pressure, cryogenic environ-ments using femtosecond lasers[C]//Proc of the 32nd AIAA Aerodynamic Measurement Technology and Ground Testing Conference. 2016. doi: 10.2514/6.2016-3246
    [14]
    BURNS R A, DANEHY P M. FLEET velocimetry measure-ments on a transonic airfoil[C]//Proc of the 55th AIAA Aerospace Sciences Meeting. 2017. doi: 10.2514/6.2017-0026
    [15]
    DOGARIU L E, DOGARIU A, MILES R B, et al. Non-intrusive hypersonic freestream and turbulent boundary-layer velocity measurements in AEDC tunnel 9 using FLEET[C]//Proc of the 2018 AIAA Aerospace Sciences Meeting. 2018. doi: 10.2514/6.2018-1769
    [16]
    ZHANG Y B, RICHARDSON D R, BERESH S J, et al. Hypersonic wake measurements behind a slender cone using FLEET velocimetry[C]//Proc of the AIAA Aviation 2019 Forum. 2019. doi: 10.2514/6.2019-3381
    [17]
    CALVERT N, DOGARIU A, MILES R B. FLEET bound-ary layer velocity profile measurements[C]//Proc of the 44th AIAA Plasmadynamics and Lasers Conference. 2013. doi: 10.2514/6.2013-2762
    [18]
    JIANG N, HALLS B R, STAUFFER H U, et al. Selective two-photon absorptive resonance femtosecond-laser electronic-excitation tagging velocimetry[J]. Optics Letters, 2016, 41(10): 2225-2228. doi: 10.1364/OL.41.002225
    [19]
    JIANG N, HALLS B R, STAUFFER H U, et al. Selective two-photon absorptive resonance femtosecond-laser electronic-excitation tagging (STARFLEET) velocimetry in flow and combustion diagnostics[C]//Proc of the 32nd AIAA Aero-dynamic Measurement Technology and Ground Testing Con-ference. 2016. doi: 10.2514/6.2016-3250
    [20]
    张大源,高强,李博,等. FLIPS技术同时测量流场速度与混合分数[J]. 工程热物理学报,2020,41(6):1544-1549.

    ZHANG D Y,GAO Q,LI B,et al. Simultaneous velocity and mixture fraction measurements in flow fields with FLIPS technique[J]. Journal of Engineering Thermophy-sics,2020,41(6):1544-1549.
    [21]
    LI B,ZHANG D Y,LI X F,et al. Femtosecond laser-induced cyano chemiluminescence in methane-seeded ni-trogen gas flows for near-wall velocimetry[J]. Journal of Physics D: Applied Physics,2018,51(29):295102. doi: 10.1088/1361-6463/aacc97
    [22]
    朱志峰,李博,高强,等. 飞秒激光电子激发标记测速方法及其在超声速射流中的试验验证[J]. 空气动力学学报,2020,38(5):880-886. doi: 10.7638/kqdlxxb-2018.0150

    ZHU Z F,LI B,GAO Q,et al. Femtosecond laser electronic excitation tagging for velocity measurement in supersonic jet[J]. Acta Aerodynamica Sinica,2020,38(5):880-886. doi: 10.7638/kqdlxxb-2018.0150
    [23]
    YANG W B,ZHOU J N,CHEN L,et al. Temporal characterization of heating in femtosecond laser filamen-tation with planar Rayleigh scattering[J]. Optics Express,2021,29(10):14883-14893. doi: 10.1364/OE.418654
    [24]
    LIMBACH C. Characterization of nanosecond, femtosecond and dual pulse laser energy addition in air for flow control and diagnostic applications[D]. Princeton: Princeton Univer-sity, 2015.
    [25]
    王春艳. 激光测量中光条关键技术研究[D]. 长春: 吉林大学, 2014.

    WANG C Y. Research on key technologies of light stripe in laser measurement[D]. Changchun: Jilin University, 2014.
    [26]
    LAVOIE P,IONESCU D,PETRIU E M. 3D object model recovery from 2D images using structured light[J]. IEEE Transactions on Instrumentation and Measurement,2004,53(2):437-443. doi: 10.1109/TIM.2004.823320
    [27]
    STEGER C. An unbiased detector of curvilinear structures[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1998,20(2):113-125. doi: 10.1109/34.659930
    [28]
    LAUX C O,SPENCE T G,KRUGER C H,et al. Optical diagnostics of atmospheric pressure air plasmas[J]. Plasma Sources Science and Technology,2003,12(2):125-138. doi: 10.1088/0963-0252/12/2/301
    [29]
    EDWARDS M, DOGARIU A, MILES R. Simultaneous temperature and velocity measurement in unseeded air flows with FLEET[C]//Proc of the 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. 2013. doi: 10.2514/6.2013-43
    [30]
    倪章松,张军,王茂,等. 开口风洞剪切层流场特性[J]. 航空动力学报,2020,35(2):244-251. doi: 10.13224/j.cnki.jasp.2020.02.003

    NI Z S,ZHANG J,WANG M,et al. Characteristics of shear-layer flow field of open-jet wind tunnels[J]. Journal of Aerospace Power,2020,35(2):244-251. doi: 10.13224/j.cnki.jasp.2020.02.003
    [31]
    张军,王勋年,张俊龙,等. 开口风洞声阵列测量的剪切层修正方法[J]. 实验流体力学,2018,32(4):39-46. doi: 10.11729/syltlx20180013

    ZHANG J,WANG X N,ZHANG J L,et al. Shear layer correction methods for open-jet wind tunnel phased array test[J]. Journal of Experiments in Fluid Mechanics,2018,32(4):39-46. doi: 10.11729/syltlx20180013
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(1)

    Article Metrics

    Article views (472) PDF downloads(53) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return