Volume 35 Issue 5
Nov.  2021
Turn off MathJax
Article Contents
LIU X Y,YUAN X L,WANG Y,et al. Experimental study on time-delay effect of unsteady hydrodynamics of the supercavitating vehicle in water tunnel[J]. Journal of Experiments in Fluid Mechanics, 2021,35(5):26-33. doi: 10.11729/syltlx20210039
Citation: LIU X Y,YUAN X L,WANG Y,et al. Experimental study on time-delay effect of unsteady hydrodynamics of the supercavitating vehicle in water tunnel[J]. Journal of Experiments in Fluid Mechanics, 2021,35(5):26-33. doi: 10.11729/syltlx20210039

Experimental study on time-delay effect of unsteady hydrodynamics of the supercavitating vehicle in water tunnel

doi: 10.11729/syltlx20210039
  • Received Date: 2021-04-29
  • Rev Recd Date: 2021-06-04
  • Available Online: 2021-11-15
  • Publish Date: 2021-11-05
  • The cavity-delay-effect has a significant impact on the tail slapping induced by maneuvering, and it is an important mechanical characteristic of supercavitating vehicles, which must be considered in dynamic modeling. The experimental method of artificial ventilated supercavitation is used in the laboratory of Northwestern Polytechnical University’s high-speed water tunnel to carry out the continuous variable angle of attack experiment. The delay time is quantitatively analyzed by measuring the changes of attack angle and dynamic force with time. Varying delay times are obtained under different conditions, and the dimensionless time-delay coefficient is approximately linearly related to the water speed. The time-delay coefficient increases with the increase of the preset rudder angle. Among the oscillation frequency used in the experiment, the larger the oscillation frequency is, the smaller the time-delay coefficient is.
  • loading
  • [1]
    VASIN A D. The principle of independence of the cavity sections expansion (logvinovich's principle) as the basis for investigation on cavitation flows[C]//Proc of the RTO AVT Lecture Series on Super-cavitating Flows. 2001.
    [2]
    KIRSCHNER I N,KRING D C,STOKES A W,et al. Control strategies for supercavitating vehicles[J]. Journal of Vibration and Control,2002,8(2):219-242. doi: 10.1177/107754602023818
    [3]
    KIRSCHNER I N, ROSENTHAL B J, UHLMAN J S. Simplified dynamical systems analysis of supercavitating high-speed bodies[C]// Proceedings of the 5th International Symposium on Cavitation. 2003.
    [4]
    GOEL A. Robust control of supercavitating vehicles in the presence of dynamic and uncertain cavity[D]. Gainesville: University of Florrda, 2005.
    [5]
    罗凯,李代金,党建军,等. 考虑空泡延迟特性的超空泡航行器运动控制模型[J]. 交通运输工程学报,2010,10(3):41-45. doi: 10.3969/j.issn.1671-1637.2010.03.007

    LUO K,LI D J,DANG J J,et al. Motion control model of supercavitating vehicle considering time-delay effect of supercavi-tation[J]. Journal of Traffic and Transportation Engineering,2010,10(3):41-45. doi: 10.3969/j.issn.1671-1637.2010.03.007
    [6]
    李代金,罗凯,党建军,等. 超空泡水下航行器空间运动建模与弹道仿真[J]. 兵工学报,2012,33(8):956-961.

    LI D J,LUO K,DANG J J,et al. Kinematic modeling and trajectory simulation for underwater supercavitating vehicles[J]. Acta Armamen-tarii,2012,33(8):956-961.
    [7]
    韩云涛,许振,白涛,等. 基于时滞特性的超空泡航行体预测控制[J]. 华中科技大学学报(自然科学版),2020,48(7):52-58.

    HAN Y T,XU Z,BAI T,et al. Predictive control of supercavitating vehicle based on time delay characteristics[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition),2020,48(7):52-58.
    [8]
    李东旭. 水下超空泡高速射弹数值分析与试验[J]. 四川兵工学报,2011,32(10):25-29.

    LI D X. Numerical analysis and experiment on high-speed projectile of underwater supercavity[J]. Journal of Sichuan Ordnance,2011,32(10):25-29.
    [9]
    何乾坤,魏英杰,尤天庆,等. 空泡摆动对超空泡航行体尾拍影响分析[J]. 北京航空航天大学学报,2012,38(4):509-512, 518.

    HE Q K,WEI Y J,YOU T Q,et al. Analysis of tail-slaps of supercavitating vehicle influenced by distortion of cavity shape[J]. Journal of Beijing University of Aeronautics and Astronautics,2012,38(4):509-512, 518.
    [10]
    KULKARNI S S,PRATAP R. Studies on the dynamics of a super-cavitating projectile[J]. Applied Mathematical Modelling,2000,24(2):113-129. doi: 10.1016/S0307-904X(99)00028-1
    [11]
    赵成功,王聪,魏英杰,等. 质心位置对超空泡射弹尾拍运动影响分析[J]. 北京航空航天大学学报,2014,40(12):1754-1760.

    ZHAO C G,WANG C,WEI Y J,et al. Analysis of the effect of mass center position on tailslap of supercavitating projectile[J]. Journal of Beijing University of Aeronautics and Astronautics,2014,40(12):1754-1760.
    [12]
    赵成功,王聪,孙铁志,等. 初始扰动对射弹尾拍运动及弹道特性影响分析[J]. 哈尔滨工业大学学报,2016,48(10):71-76. doi: 10.11918/j.issn.0367-6234.2016.10.010

    ZHAO C G,WANG C,SUN T Z,et al. Analysis of tail-slapping and ballistic characteristics of supercavitating projectiles under different initial disturbances[J]. Journal of Harbin Institute of Technology,2016,48(10):71-76. doi: 10.11918/j.issn.0367-6234.2016.10.010
    [13]
    赵成功. 高速射弹非定常运动多相流场与弹道特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2017.

    ZHAO C G. Research on multiphase flow and trajectory characteri-stics of unsteady movement of high speed projectile[D]. Harbin: Harbin Institute of Technology, 2017.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(4)

    Article Metrics

    Article views (568) PDF downloads(42) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return