Volume 35 Issue 6
Dec.  2021
Turn off MathJax
Article Contents
LIU J,SONG Y H,CHEN L,et al. Free oscillation dynamic derivative test technology of a short-blunt shape vehicle[J]. Journal of Experiments in Fluid Mechanics, 2021,35(6):66-72. doi: 10.11729/syltlx20210010
Citation: LIU J,SONG Y H,CHEN L,et al. Free oscillation dynamic derivative test technology of a short-blunt shape vehicle[J]. Journal of Experiments in Fluid Mechanics, 2021,35(6):66-72. doi: 10.11729/syltlx20210010

Free oscillation dynamic derivative test technology of a short-blunt shape vehicle

doi: 10.11729/syltlx20210010
  • Received Date: 2021-01-28
  • Rev Recd Date: 2021-04-14
  • Available Online: 2021-12-10
  • Publish Date: 2021-12-30
  • In order to study the dynamic stability characteristics of the short-blunt shape vehicle, the free oscillation dynamic derivative test method is used to establish the dynamic derivative measurement test technology in the 1.2 m trisonic wind tunnel. The newly designed elastic hinges and bearing hinges solve the problem of elastic support and low-frequency oscillation simulation of the short-blunt shape vehicle, and the newly established test device is used to study the influence of the Mach number, angle of attack, reduced frequency, and shape on dynamic stability characteristics. The newly designed elastic hinge can meet the model support and oscillation requirement under the aerodynamic characteristic condition of the short-blunt shape vehicle in the wind tunnel, and the bearing hinge support can simulate the oscillation frequency close to the actual reduced frequency in the wind tunnel. In the trisonic wind tunnel, the measurement of the pitch derivative of a short-blunt shaped vehicle was completed, and the unstable state points of the pitching were obtained, which provides experimental support for future research on the dynamic stability characteristics of this type of vehicle.
  • loading
  • [1]
    WAY D W, POWELL R W, CHEN A, et al. Mars science laboratory: entry, descent, and landing system performance[C]//Proc of the 2007 IEEE Aerospace Conference. 2007. doi: 10.1109/AERO.2007.352821
    [2]
    REICHENAU D E A. Aerodynamic characteristics of disk-gap-band parachutes in the wake of Viking entry forebodies at Mach numbers from 0.2 to 2.6[R]. AEDC-TR-72-78, 1972. doi: 10.21236/ad0746291
    [3]
    Petrick D, Davis B, Peregino P, et al. An experimental approach to determine the flight dynamics of NASA's Mars Science Lab Capsule[R]. ARL-TR-6790, 2017.
    [4]
    EDQUIST K T, HOLLIS B R. Mars science laboratory heatshield aerothermodynamics: design and reconstruction [R]. AIAA 2013-2781, 2013. doi: 10.2514/6.2013-2781
    [5]
    ALKANDRY H, BOYD I, REED E, et al. Numerical study of hypersonic wind tunnel experiments for Mars entry aeroshells[R]. AIAA 2009-3918, 2009. doi: 10.2514/6.2009-3918
    [6]
    YOSHINAGA T,TATE A,WATANABE M,et al. Orbital re-entry experiment vehicle ground and flight dynamic test results comparison[J]. Journal of Spacecraft and Rockets,1996,33(5):635-642. doi: 10.2514/3.26813
    [7]
    赵梦熊. 载人飞船返回舱的再入气动环境[J]. 气动实验与测量控制,1995,9(4):1-7.

    ZHAO M X. The aerodynamic and aerothermodynamic circumstances of capsule type re-entry vehicle[J]. Aerodynamic Experiment and Measurement & Control,1995,9(4):1-7.
    [8]
    赵梦熊. 载人飞船返回舱的动稳定性[J]. 气动实验与测量控制,1995,9(2):1-8.

    ZHAO M X. The dynamic stability characteristics of capsule type Re-entry vehicles[J]. Aerodynamic Experiment and Measurement & Control,1995,9(2):1-8.
    [9]
    方方. 神舟飞船返回舱气动设计综述[J]. 航天器工程,2004,13(1):124-131. doi: 10.2514/3.26813
    [10]
    马洋,张青斌,丰志伟. 大气环境对火星探测器气动特性影响分析[J]. 航天返回与遥感,2016,37(2):18-25. doi: 10.3969/j.issn.1009-8518.2016.02.003

    MA Y,ZHANG Q B,FENG Z W. Influence of atmosphere condition on aerodynamic characteristics of Mars probe[J]. Spacecraft Recovery & Remote Sensing,2016,37(2):18-25. doi: 10.3969/j.issn.1009-8518.2016.02.003
    [11]
    何开锋,和争春. 飞船返回舱跨声速全局稳定性研究[J]. 飞行力学,1999,17(3):34-38. doi: 10.3969/j.issn.1002-0853.1999.03.007

    HE K F,HE Z C. The global stability analysis of reentry capsule transonic flight[J]. Flight Dynamics,1999,17(3):34-38. doi: 10.3969/j.issn.1002-0853.1999.03.007
    [12]
    宋玉辉,陈农,秦永明. 亚跨超声速返回舱动稳定特性[J]. 航天返回与遥感,2014,35(2):31-38. doi: 10.3969/j.issn.1009-8518.2014.02.005

    SONG Y H,CHEN N,QIN Y M. Sub-, trans- and super-sonic dynamic stability characteristics for reentry capsule[J]. Spacecraft Recovery & Remote Sensing,2014,35(2):31-38. doi: 10.3969/j.issn.1009-8518.2014.02.005
    [13]
    刘伟,赵海洋,杨小亮. 返回舱动态稳定性分析及被动控制方法研究[J]. 中国科学G辑,2010,40(9):1156-1164.

    LIU W,ZHAO H Y,YANG X L. Analysis of dynamic stability and research of passive control method for capsule[J]. Science in China (Series G),2010,40(9):1156-1164.
    [14]
    张涵信,袁先旭,叶友达,等. 飞船返回舱俯仰振荡的动态稳定性研究[J]. 空气动力学学报,2002,20(3):247-259. doi: 10.3969/j.issn.0258-1825.2002.03.001

    ZHANG H X,YUAN X X,YE Y D,et al. Research on the dynamic stability of an orbital reentry vehicle in pitching[J]. Acta Aerodynamica Sinica,2002,20(3):247-259. doi: 10.3969/j.issn.0258-1825.2002.03.001
    [15]
    杨在山. 载人飞船返回舱的气动特性分析与外形设计[J]. 气动实验与测量控制,1996,10(4):12-18.

    YANG Z S. The configuration and aerodynamic characteristics of manned re-entry capsules[J]. Aerodynamic Experiment and Measurement & Control,1996,10(4):12-18.
    [16]
    贾区耀, 陈农, 杨益农, 等. 返回舱跨声速动稳定特性[C]//近代空气动力学研讨会论文集. 2005: 182-187.
    [17]
    梁杰,李志辉,李齐,等. 返回舱再入跨流域气动及配平特性数值研究[J]. 空气动力学学报,2018,36(5):848-855. doi: 10.7638/kqdlxxb-2018.0128

    LIANG J,LI Z H,LI Q,et al. Numerical simulation of aerodynamic and trim characteristics across different flow regimes for reentry module[J]. Acta Aerodynamica Sinica,2018,36(5):848-855. doi: 10.7638/kqdlxxb-2018.0128
    [18]
    宋威,艾邦成,蒋增辉,等. 返回舱跨声速自由飞行的静动稳定性[J]. 实验流体力学,2019,33(4):89-94. doi: 10.11729/syltlx20180083

    SONG W,AI B C,JIANG Z H,et al. Free flight static and dynamic aerodynamic characteristics for re-entry capsule at transonic speed[J]. Journal of Experiments in Fluid Mechanics,2019,33(4):89-94. doi: 10.11729/syltlx20180083
    [19]
    周伟江. 返回舱自由振动跨声速非定常流场数值模拟[J]. 空气动力学学报,2000,18(1):46-51. doi: 10.3969/j.issn.0258-1825.2000.01.007

    ZHOU W J. Numerical simulation of unsteady transonic flow around a free oscillating reentry vehicle[J]. Acta Aerodynamica Sinica,2000,18(1):46-51. doi: 10.3969/j.issn.0258-1825.2000.01.007
    [20]
    胡静,宋玉辉,陈农,等. 返回舱动稳定特性风洞试验的影响参数[J]. 航天返回与遥感,2013,34(5):14-19. doi: 10.3969/j.issn.1009-8518.2013.05.003

    HU J,SONG Y H,CHEN N,et al. Study of key parameters for dynamic stability of reentry capsule[J]. Spacecraft Recovery & Remote Sensing,2013,34(5):14-19. doi: 10.3969/j.issn.1009-8518.2013.05.003
    [21]
    范洁川. 风洞试验手册[M]. 北京: 航空工业出版社, 2002: 430-440.
    [22]
    USELTEM B L, WALLACE A R. Damping-in-pitch and drag characteristics of the Viking configuration at Mach numbers from 1.6 through 3[R]. AEDC-TR-72-56, 1972.
    [23]
    USELTON B L, SHADOW T O, MANSFIELD A C. Damping in pitch derivatives of 120 and 140 degree blunted cones at Mach numbers of 0.3 through 3[R]. AEDC-TR-70-49, 1972.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(3)

    Article Metrics

    Article views (763) PDF downloads(58) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return