Volume 35 Issue 6
Dec.  2021
Turn off MathJax
Article Contents
WANG S,DONG J G,ZHANG C K,et al. The study of ejection mechanism and drop-test in high-speed wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2021,35(6):73-78. doi: 10.11729/syltlx20200149
Citation: WANG S,DONG J G,ZHANG C K,et al. The study of ejection mechanism and drop-test in high-speed wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2021,35(6):73-78. doi: 10.11729/syltlx20200149

The study of ejection mechanism and drop-test in high-speed wind tunnel

doi: 10.11729/syltlx20200149
  • Received Date: 2020-12-01
  • Rev Recd Date: 2021-03-09
  • Available Online: 2021-11-12
  • Publish Date: 2021-12-30
  • It is necessary to evaluate the separation safety of supersonic embedded weapons for the new generation fighter. According to the requirements of high-speed wind tunnel launching test of embedded weapons, a new type of double cylinder ejection mechanism is designed, which can realize the continuously adjustment of the initial velocity and the initial angular velocity. Firstly, the NX modeling software is used to design the structural and three-dimensional modeling of the ejection mechanism. Secondly, based on the pressure equations of the cylinder rod free cavity and rod cavity, and the flow equation of the rod free cavity and rod cavity connected with the atmosphere and the piston driving force equation, the mathematical model of the ejection process was established, and the design of the ejection mechanism was simulated and analyzed by using the motion simulation software to verify the rationality of the structure. According to the control requirements of the ejection mechanism, the servo control system of the ejection mechanism was designed by using the electric servo valve and related control elements. Finally, the wind tunnel test of Mach 1.5 was carried out. The experiment shows that the maximum ejection speed of the model can reach 5.68 m/s under the condition that the air pressure is not more than 1.0 MPa, and the initial attitude of the carrier is close to the simulation results, which can meet the design and use requirements.
  • loading
  • [1]
    吴继飞. 内埋武器舱系统气动特性研究[D]. 绵阳: 中国空气动力研究与发展中心, 2012.

    WU J F. Investigation on aerodynamic characteristics of internal weapons bay system[D]. Mianyang: China Aerodynamics Research and Development Center, 2012.
    [2]
    FLORA T J. Freedrop testing and CFD simulation of ice models from a cavity into supersonic flow[R]. AFIT/GAE/ENY/12-SI5, 2012.
    [3]
    BAKER W B Jr, KEEN S, MORGRET C. Validation of weapon separation predictions using F/A-22 flight test results[R]. AIAA 2004-6803, 2004. doi: 10.2514/6.2004-6803
    [4]
    PURDON M L, HETREED C F, HUDSON M L. F-35 pre-flight store separation analyses: innovative techniques for affordability[R]. AIAA 2009-0102, 2009. doi: 10.2514/6.2009-102
    [5]
    冯金富, 杨松涛, 刘文杰. 战斗机武器内埋关键技术综述[J]. 飞航导弹, 2010(7): 71-74.
    [6]
    BJORGE S T,REEDER M F,SUBRAMANIAN C,et al. Flow around an object projected from a cavity into a supersonic free-stream[J]. AIAA Journal,2005,43(7):1465-1475. doi: 10.2514/6.2004-1253
    [7]
    尉建刚,桑为民,雷熙薇. 内埋式武器舱的流动及气动特性分析[J]. 飞行力学,2011,29(2):29-32.

    YU J G,SANG W M,LEI X W. Analysis of the flow characteristics and aerodynamic problems in internal weapons bay[J]. Flight Dyna-mics,2011,29(2):29-32.
    [8]
    薛飞,金鑫,王誉超,等. 内埋武器高速投放风洞试验技术[J]. 航空学报,2017,38(1):120114.

    XUE F,JIN X,WANG Y C,et al. Wind tunnel test technique on high speed weapon delivery from internal weapons bay[J]. Acta Aeronau-tica et Astronautica Sinica,2017,38(1):120114.
    [9]
    蒋增辉,宋威,鲁伟,等. 高速风洞投放模型试验技术的关键问题及应用领域[J]. 空气动力学学报,2016,34(6):744-749, 802. doi: 10.7638/kqdlxxb-2015.0195

    JIANG Z H,SONG W,LU W,et al. Critical problems and applied fields of drop-model testing technique in high speed wind tunnel[J]. Acta Aerodynamica Sinica,2016,34(6):744-749, 802. doi: 10.7638/kqdlxxb-2015.0195
    [10]
    刘兰荣,马胜钢,刘晓龙,等. 贮气瓶供气弹射系统性能的仿真研究[J]. 机床与液压,2013,41(11):170-172. doi: 10.3969/j.issn.1001-3881.2013.11.048

    LIU L R,MA S G,LIU X L,et al. Simulation research on the performance of ejection system supplied by air bottle[J]. Machine Tool & Hydraulics,2013,41(11):170-172. doi: 10.3969/j.issn.1001-3881.2013.11.048
    [11]
    陈晓光,吕蒙,李超锋,等. 贮气弹射机构发射过程建模及其影响因素分析[J]. 导弹与航天运载技术,2019(3):16-20. doi: 10.7654/j.issn.1004-7182.20190304

    CHEN X G,LYV M,LI C F,et al. Modeling and influencing factors analysis of launch process of a gas storage ejection device[J]. Missiles and Space Vehicles,2019(3):16-20. doi: 10.7654/j.issn.1004-7182.20190304
    [12]
    杜尧. 开口缸气动弹射装置动力学分析与优化[D]. 南京: 南京理工大学, 2018.
    [13]
    刘救世. 贮气瓶供气无人机弹射器弹射过程的研究[D]. 郑州: 郑州大学, 2013.

    LIU J S. Study on the ejection process of the UAV catapult supplied by gas cylinder[D]. Zhengzhou: Zhengzhou University, 2013.
    [14]
    何威. 内置气动式弹射装置设计与虚拟样机仿真研究[D]. 大连: 大连理工大学, 2012.

    HE W. The design and virtual prototype simulation study of internal pneumatic ejection device[D]. Dalian: Dalian University of Techno-logy, 2012.
    [15]
    徐张宝. 高压气动弹射过程控制研究[D]. 南京: 南京理工大学, 2018.

    XU Z B. Research on high pressure pneumatic launching process control[D]. Nanjing: Nanjing University of Science and Technology, 2018.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)

    Article Metrics

    Article views (431) PDF downloads(26) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return