Volume 35 Issue 3
Jun.  2021
Turn off MathJax
Article Contents
LIANG Liang, TANG Puhua, LIU Yu. Numerical simulation and experimental measurement of fluid flow field in pipe with capsule robot[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(3): 60-68. doi: 10.11729/syltlx20200145
Citation: LIANG Liang, TANG Puhua, LIU Yu. Numerical simulation and experimental measurement of fluid flow field in pipe with capsule robot[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(3): 60-68. doi: 10.11729/syltlx20200145

Numerical simulation and experimental measurement of fluid flow field in pipe with capsule robot

doi: 10.11729/syltlx20200145
  • Received Date: 2020-12-01
  • Rev Recd Date: 2021-01-07
  • Publish Date: 2021-06-25
  • Capsule robots are widely used in the inspection and treatment of human intestines. According to the permanent magnet method, a magnetically controlled smooth capsule robot is designed and manufactured. Based on the Computational Fluid Dynamics (CFD) method, the fluid flow field (velocity and vorticity) around the capsule robot is numerically simulated when the capsule robot precesses (rotates and translates) in the pipe filled with mucus. The Particle Image Velocimetry (PIV) technology is used to measure the fluid flow field. The resistance, the resisting moment of the robot and the average turbulent intensity of the surrounding fluid are further calculated as the capsule robot precesses at different rotational speeds. Finally, the shape and distribution of fluid streamlines, and the distribution and size of the fluid velocity and vorticity around the capsule robot are also experimentally measured. The results show that: 1) when the rotational speed of the capsule robot is increased, the fluid velocity and vorticity in the surrounding and lower regions of the capsule robot are slightly increased, while the fluid streamlines and vorticity distribution of the surrounding fluid are basically similar. 2) With the increase of the rotational speed of the capsule robot, the resisting moment of the capsule robot in the forward direction and the average turbulent intensity of the surrounding fluid are all increased, while the resistance of the capsule robot in the forward direction remains basically unchanged. 3) The experimentally measured shape and distribution of fluid streamlines, and the measured distribution and size of the fluid velocity and fluid vorticity around the capsule robot are basically similar to the numerical calculation results.
  • loading
  • [1]
    廖专, 李兆申, 金震东. 消化道遥控胶囊内镜图谱[M]. 北京: 清华大学出版社, 2015.

    LIAO Z, LI Z S, JIN Z D. Atlas of remote-controlled capsule endoscopy in digestive tract[M]. Beijing: Tsinghua University Press, 2015.
    [2]
    IDDAN G, MERON G, GLUKHOVSKY A, et al. Wireless capsule endoscopy[J]. Nature, 2000, 405(6785): 417. doi: 10.1038/35013140
    [3]
    张永顺, 迟明路, 程存欣, 等. 一种高性能花瓣廓形胶囊机器人[J]. 机械工程学报, 2017, 53(3): 9-16. doi: 10.3901/JME.2017.03.009

    ZHANG Y S, CHI M L, CHENG C X, et al. Petal-shaped capsule robot with high performance[J]. Journal of Mechanical Engineering, 2017, 53(3): 9-16. doi: 10.3901/JME.2017.03.009
    [4]
    LIANG L, PENG H, CHEN B, et al. Performance analysis and parameter optimization of an inner spiral in-pipe robot[J]. Robotica, 2016, 34(2): 361-382. doi: 10.1017/s0263574714001507
    [5]
    蒲鹏先, 颜国正, 王志武, 等. 微型肠道机器人扩张机构与能量接收线圈的设计与实验[J]. 上海交通大学学报, 2019, 53(10): 1143-1150. doi: 10.16183/j.cnki.jsjtu.2019.10.001

    PU P X, YAN G Z, WANG Z W, et al. Design and experiment of expanding mechanism and power receiving coil for micro intestinal robot[J]. Journal of Shanghai Jiao Tong University, 2019, 53(10): 1143-1150. doi: 10.16183/j.cnki.jsjtu.2019.10.001
    [6]
    LI J, BARJUEI E S, CIUTI G, et al. Magnetically-driven medical robots: an analytical magnetic model for endoscopic capsules design[J]. Journal of Magnetism and Magnetic Materials, 2018, 452: 278-287. doi: 10.1016/j.jmmm.2017.12.085
    [7]
    PITTIGLIO G, BARDUCCI L, MARTIN J W, et al. Magnetic levitation for soft-tethered capsule colonoscopy actuated with a single permanent magnet: a dynamic control approach[J]. IEEE Robotics and Automation Letters, 2019, 4(2): 1224-1231. doi: 10.1109/lra.2019.2894907
    [8]
    ZHANG C, LIU H. Analytical friction model of the capsule robot in the small intestine[J]. Tribology Letters, 2016, 64(3): 1-11. doi: 10.1007/s11249-016-0774-8
    [9]
    LI P B, KREIKEMEIER-BOWER C, XIE W C, et al. Design of a wireless medical capsule for measuring the contact pressure between a capsule and the small intestine[J]. Journal of Biomechanical Engineering, 2017, 139(5): 051003. doi: 10.1115/1.4036260
    [10]
    刘毅, 赵晓霞, 江宗辉, 等. 低速飞机加装翼梢小翼的CFD数值计算及风洞试验研究[J]. 实验流体力学, 2015, 29(1): 55-59. doi: 10.11729/syltlx20130039

    LIU Y, ZHAO XX, JIANG Z H, et al. The computational and experimental investigation on winglets of a low speed aircraft[J]. Journal of Experiments in Fluid Mechanics, 2015, 29(1): 55-59. doi: 10.11729/syltlx20130039
    [11]
    何丽娟, 马文清, 孙尚志, 等. 基于FLUENT的涡流管内部场的数值模拟及旋流流动分析[J]. 流体机械, 2020, 48(8): 18-24, 31. doi: 10.3969/j.issn.1005-0329.2020.08.004

    HE L J, MA W Q, SUN S Z, et al. Numerical simulation of vortex tube internal field and analysis of swirl flow on the basis of fluent[J]. Fluid Machinery, 2020, 48(8): 18-24, 31. doi: 10.3969/j.issn.1005-0329.2020.08.004
    [12]
    王福君, 王洪平, 高琪, 等. 鱼游动涡结构PIV实验研究[J]. 实验流体力学, 2020, 34(5): 20-28. doi: 10.11729/syltlx20200039

    WANG F J, WANG H P, GAO Q, et al. PIV experimental study on fish swimming vortex structure[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(5): 20-28. doi: 10.11729/syltlx20200039
    [13]
    BLOIS G, BRISTOW N R, KIM T, et al. Novel environment enables PIV measurements of turbulent flow around and within complex topographies[J]. Journal of Hydraulic Engineering, 2020, 146(5): 04020033. doi: 10.1061/(asce)hy.1943-7900.0001733
    [14]
    王福军. 计算流体动力学分析-CFD软件原理与应用[M]. 北京: 清华大学出版社, 2004.
    [15]
    刘晓玲, 韩杨, 吴桂新. 二甲硅油散在上消化道内镜诊治中的应用[J]. 中国内镜杂志, 2016, 22(6): 44-46. doi: 10.3969/j.issn.1007-1989.2016.06.012

    LIU X L, HAN Y, WU G X. Dimethicone power applied under endoscopy in examination of upper gastrointestinal tract[J], China Journal of Endoscopy, 2016, 22(6): 44-46. doi: 10.3969/j.issn.1007-1989.2016.06.012
    [16]
    李劼, 张翮辉, 张红亮, 等. 大型铝电解槽电解质流场涡结构的数值模拟[J]. 中国有色金属学报, 2012, 22(7): 2082-2089. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201207031.htm

    LI J, ZHANG H H, ZHANG H L, et al. Numerical simulation on vortical structures of electrolyte flow field in large aluminium reduction cells[J]. The Chinese Journal of Nonferrous Metals, 2012, 22(7): 2082-2089. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201207031.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(16)

    Article Metrics

    Article views (385) PDF downloads(19) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return