Volume 35 Issue 3
Jun.  2021
Turn off MathJax
Article Contents
FU Hao, HE Chuangxin, LIU Yingzheng. PIV experimental study on flow characteristics of a low swirl number precessing jet[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(3): 39-45. doi: 10.11729/syltlx20200129
Citation: FU Hao, HE Chuangxin, LIU Yingzheng. PIV experimental study on flow characteristics of a low swirl number precessing jet[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(3): 39-45. doi: 10.11729/syltlx20200129

PIV experimental study on flow characteristics of a low swirl number precessing jet

doi: 10.11729/syltlx20200129
  • Received Date: 2020-10-22
  • Rev Recd Date: 2020-11-09
  • Publish Date: 2021-06-25
  • This study focuses on the flow characteristics of a low swirl number precessing jet at Reynolds number Re=4.5×104 using particle image velocimetry (PIV). The time-averaged streamwise velocity fields, streamwise velocity fluctuation intensity fields and time-averaged vorticity fields at three swirl numbers, i.e., S=0, 0.26 and 0.41, respectively, are compared and analyzed. The experimental results show that as the swirl number increases, the attenuation of the streamwise velocity and its fluctuation intensity increase along the streamwsie direction, the velocity fluctuation intensity on the jet centerline increases, the recirculation zones caused by the confinement move upstream with their scales decreasing, and the streamwise development of the vortex in the outer shear layer decays rapidly, while that in the inner shear layer is almost unaffected. In addition, combining the streamwise velocity spectrum and the characteristics of the transient flow field at a typical time, it can be seen that as the swirl number increases, the precession frequency increases, and the starting position of the precession phenomenon moves upstream, which increases the precession deflection angle.
  • loading
  • [1]
    NATHAN G J, MANIAS C G. The role of process and flame interaction in reducing NOx emissions[C]//Proceedings of the Institute of Energy's Second International Conference on Combustion & Emissions Control. 1995. doi: 10.1016/b978-0-902597-49-5.50032-9
    [2]
    NEWBOLD G J R, NATHAN G J, NOBES D S, et al. Measurement and prediction of NOx emissions from unconfined propane flames from turbulent-jet, bluff-body, swirl, and precessing jet burners[J]. Proceedings of the Combustion Institute, 2000, 28(1): 481-487. doi: 10.1016/S0082-0784(00)80246-5
    [3]
    DENG Y B, WU H W, SU F M. Combustion and exhaust emission characteristics of low swirl injector[J]. Applied Thermal Engineering, 2017, 110: 171-180. doi: 10.1016/j.applthermaleng.2016.08.169
    [4]
    COLORADO A, MCDONELL V. Emissions and stability performance of a low-swirl burner operated on simulated biogas fuels in a boiler environment[J]. Applied Thermal Engineering, 2018, 130: 1507-1519. doi: 10.1016/j.applthermaleng.2017.11.047
    [5]
    TONG Y H, YU S B, LIU X, et al. Experimental study on dynamics of a confined low swirl partially premixed methane-hydrogen-air flame[J]. International Journal of Hydrogen Energy, 2017, 42(44): 27400-27415. doi: 10.1016/j.ijhydene.2017.09.066
    [6]
    LUXTON R E, NATHAN G J. Mixing fluids: Australian, PCT/AU88/0014. 1987.
    [7]
    NATHAN G J. The enhanced mixing burner[D]. Adelaide: The University of Adelaide, 1988.
    [8]
    NEWBOLD G. Mixing and combustion inprecessing jet flows[D]. Adelaide: The University of Adelaide, 1998.
    [9]
    NATHAN G J, HILL S J, LUXTON R E. An axisymmetric 'fluidic' nozzle to generate jet precession[J]. Journal of Fluid Mechanics, 1998, 370: 347-380. doi: 10.1017/s002211209800202x
    [10]
    WONG C Y, NATHAN G J, KELSO R M. The naturally oscillating flow emerging from a fluidicprecessing jet nozzle[J]. Journal of Fluid Mechanics, 2008, 606: 153-188. doi: 10.1017/s0022112008001699
    [11]
    WONG C Y, LANSPEARY P V, NATHAN G J, et al. Phase-averaged velocity in a fluidicprecessing jet nozzle and in its near external field[J]. Experimental Thermal and Fluid Science, 2003, 27(5): 515-524. doi: 10.1016/S0894-1777(02)00265-0
    [12]
    CAFIERO G, CEGLIA G, DISCETTI S, et al. On the three-dimensionalprecessing jet flow past a sudden expansion[J]. Experiments in Fluids, 2014, 55(2): 1-13. doi: 10.1007/s00348-014-1677-9
    [13]
    CEGLIA G, CAFIERO G, ASTARITA T. Experimental investigation on the three-dimensional organization of the flow structures inprecessing jets by tomographic PIV[J]. Experimental Thermal and Fluid Science, 2017, 89: 166-180. doi: 10.1016/j.expthermflusci.2017.08.008
    [14]
    GUPTA A K, LILLEY D G, SYRED N. Swirl flows[M]. Tunbridge Wells: Abacus Press, 1984.
    [15]
    FROUD D, O'DOHERTY T, SYRED N. Phase averaging of theprecessing vortex core in a swirl burner under piloted and premixed combustion conditions[J]. Combustion and Flame, 1995, 100(3): 407-412. doi: 10.1016/0010-2180(94)00167-Q
    [16]
    DELLENBACK P A, METZGER D E, NEITZEL G P. Measurements in turbulent swirling flow through an abrupt axisymmetric expansion[J]. AIAA Journal, 1988, 26(6): 669-681. doi: 10.2514/3.9952
    [17]
    HE C X, GAN L, LIU Y Z. The formation and evolution of turbulent swirling vortex rings generated by axial swirlers[J]. Flow, Turbulence and Combustion, 2020, 104(4): 795-816. doi: 10.1007/s10494-019-00076-2
    [18]
    MI J, NATHAN G J. Self-excited jet-precessionStrouhal number and its influence on downstream mixing field[J]. Journal of Fluids and Structures, 2004, 19(6): 851-862. doi: 10.1016/j.jfluidstructs.2004.04.006
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)

    Article Metrics

    Article views (553) PDF downloads(62) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return