Volume 35 Issue 6
Dec.  2021
Turn off MathJax
Article Contents
GUO T,YUAN D K,ZHAO F Z. Study of morphological characteristics and gravitational potential energy of crater formed by droplet impact[J]. Journal of Experiments in Fluid Mechanics, 2021,35(6):17-27. doi: 10.11729/syltlx20200128
Citation: GUO T,YUAN D K,ZHAO F Z. Study of morphological characteristics and gravitational potential energy of crater formed by droplet impact[J]. Journal of Experiments in Fluid Mechanics, 2021,35(6):17-27. doi: 10.11729/syltlx20200128

Study of morphological characteristics and gravitational potential energy of crater formed by droplet impact

doi: 10.11729/syltlx20200128
  • Received Date: 2020-10-17
  • Rev Recd Date: 2020-11-27
  • Available Online: 2021-11-12
  • Publish Date: 2021-12-30
  • The processes of single droplets with different diameters and different speeds impacting on the liquid pool with different depths were captured using a high-speed camera. The morphological characteristics of the craters were analyzed. For the deep liquid pools, when the volume of the crater reaches the maximum, its shape is approximately a hemi-sphere. However, for the shallow liquid pools, due to the restriction of the pool bottom, the crater cannot fully develop. Thus, when its volume reaches the maximum, the shape of the crater looks like a hemi-sphere with the bottom being cut-off. For the deep liquid pools, the liquid jet is thick and short, and the number of the secondary liquid droplets is less. For the shallow liquid pools, the liquid jet is fine and high, and the number of the secondary liquid droplets is more. The dimensionless maximum horizontal length and the dimensionless maximum depth of the crater increase with the increase of the Weber number. The larger the diameter of the droplet is, the smaller the dimensionless maximum horizontal length and the dimensionless maximum depth are. For the deep pools, both the dimensionless maximum horizontal length and dimensionless depth increase with the decrease of the pool depth. However, when the pool depth is decreased to a certain value, the dimensionless maximum horizontal length and dimensionless maximum depth decrease significantly. The existing gravitational potential energy model of the crater was extended, and the law of the gravitational potential energy of the crater was analyzed. The gravitational potential energy of the crater increases with the increase of the initial kinetic energy of the droplet. For the deep liquid pools, the gravitational potential energy of the crater increases as the depth of the crater decreases. For the shallow liquid pools, the ratio of the gravitational potential energy to the initial kinetic energy of the droplet is lower.
  • loading
  • [1]
    WORTHINGTON A M. On the forms assumed by drops of liquids falling vertically on a horizontal plate[J]. Proceedings of the Royal Society of London,1876,25(171-178):261-272. doi: 10.1098/rspl.1876.0048
    [2]
    WORTHINGTON A M,COLE R S. Impact with a liquid surface, studied by the aid of instantaneous photography[J]. Philosophical Transactions of the Royal Society of London(Series A),1897,189(1):137-148. doi: 10.1098/rsta.1897.0005
    [3]
    蔡一坤. 液滴和液面碰撞[J]. 力学学报,1989,21(3):273-279, 385-386. doi: 10.6052/0459-1879-1989-3-1989-305

    CAI Y K. Collision of a water drop on water[J]. Acta Mechanica Sinica,1989,21(3):273-279, 385-386. doi: 10.6052/0459-1879-1989-3-1989-305
    [4]
    郑哲敏. 液滴与液面碰撞时发生环形穿入的条件[J]. 力学学报,1990,22(3):337-340. doi: 10.1007/BF02019148

    ZHENG Z M. Condition for occurence of circular penetration during impact of a falling droplet with a fluid[J]. Acta Mechanica Sinica,1990,22(3):337-340. doi: 10.1007/BF02019148
    [5]
    REIN M. Phenomena of liquid drop impact on solid and liquid surfaces[J]. Fluid Dynamics Research,1993,12(2):61-93. doi: 10.1016/0169-5983(93)90106-K
    [6]
    BISIGHINI A,COSSALI G E,TROPEA C,et al. Crater evolution after the impact of a drop onto a semi-infinite liquid target[J]. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics,2010,82(3 Pt 2):036319. doi: 10.1103/PhysRevE.82.036319
    [7]
    OG̃UZ H N,PROSPERETTI A. Bubble entrainment by the impact of drops on liquid surfaces[J]. Journal of Fluid Mechanics,1990,219:143-179. doi: 10.1017/S0022112090002890
    [8]
    VANDER WAL R L,BERGER G M,MOZES S D. Droplets splashing upon films of the same fluid of various depths[J]. Experiments in Fluids,2006,40(1):33-52. doi: 10.1007/s00348-005-0044-2
    [9]
    MANZELLO S L,YANG J C. An experimental study of a water droplet impinging on a liquid surface[J]. Experiments in Fluids,2002,32(5):580-589. doi: 10.1007/s00348-001-0401-8
    [10]
    CASTILLO-OROZCO E,DAVANLOU A,CHOUDHURY P K, et al. Droplet impact on deep liquid pools: Rayleigh jet to formation of secondary droplets[J]. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics,2015,92(5):053022. doi: 10.1103/PhysRevE.92.053022
    [11]
    夏秀文,张新琴,王永江. 液滴与液面碰撞对冲聚合现象研究[J]. 井冈山大学学报(自然科学版),2014,35(6):21-24. doi: 10.3969/j.issn.1674-8085.2014.06.005

    XIA X W,ZHANG X Q,WANG Y J. Study on collision and coalescence phenomenon of a droplet impact on fluid surface[J]. Journal of Jinggangshan University (Natural Sciences Edition),2014,35(6):21-24. doi: 10.3969/j.issn.1674-8085.2014.06.005
    [12]
    马慧敏,刘长根,李旭,等. 液滴冲击液面过程中变形特征的实验研究[J]. 实验力学,2019,34(4):600-608. doi: 10.7520/1001-4888-18-016

    MA H M,LIU C G,LI X,et al. Experimental study of deformation characteristics during the process of liquid drop impact liquid surface[J]. Journal of Experimental Mechanics,2019,34(4):600-608. doi: 10.7520/1001-4888-18-016
    [13]
    曹刚,余思潇,颜廷涧,等. 不同液池深度下液滴撞击成泡现象[J]. 实验流体力学,2019,33(4):95-99. doi: 10.11729/syltlx20190016

    CAO G,YU S X,YAN T J,et al. Blister formation phenomenon for droplet impact under different liquid pool depths[J]. Journal of Experiments in Fluid Mechanics,2019,33(4):95-99. doi: 10.11729/syltlx20190016
    [14]
    裴传康,魏炳乾,左娟莉,等. 椭圆形变微小水滴撞击深水液池运动大型气泡夹带机理[J]. 物理学报,2019,68(20):204703. doi: 10.7498/aps.68.20190541

    PEI C K,WEI B Q,ZUO J L,et al. Numerical investigation of large bubble entrapment mechanism for micron droplet impact on deep pool[J]. Acta Physica Sinica,2019,68(20):204703. doi: 10.7498/aps.68.20190541
    [15]
    裴传康,魏炳乾. 微小水滴撞击深水液池空腔运动的数值模拟及机理研究[J]. 物理学报,2018,67(22):224703. doi: 10.7498/aps.67.20181422

    PEI C K,WEI B Q. Numerical investigation of cavity formation mechanism for micron-waterdrop impact on deep pool[J]. Acta Physica Sinica,2018,67(22):224703. doi: 10.7498/aps.67.20181422
    [16]
    郑明飞. 双液滴撞击液膜的流动过程研究[J]. 甘肃科技,2020,36(1):84-87. doi: 10.3969/j.issn.1000-0952.2020.01.026
    [17]
    MICHON G-J,JOSSERAND C,SÉON T. Jet dynamics post drop impact on a deep pool[J]. Physical Review Fluids,2017,2(2):023601. doi: 10.1103/PhysRevFluids.2.023601
    [18]
    LIANG G T,MUDAWAR I. Review of mass and momentum interactions during drop impact on a liquid film[J]. International Journal of Heat and Mass Transfer,2016,101:577-599. doi: 10.1016/j.ijheatmasstransfer.2016.05.062
    [19]
    SAHA A,WEI Y J,TANG X Y,et al. Kinematics of vortex ring generated by a drop upon impacting a liquid pool[J]. Journal of Fluid Mechanics,2019,875:842-853. doi: 10.1017/jfm.2019.503
    [20]
    ENGEL O G. Crater depth in fluid impacts[J]. Journal of Applied Physics,1966,37(4):1798-1808. doi: 10.1063/1.1708605
    [21]
    MACKLIN W C,METAXAS G J. Splashing of drops on liquid layers[J]. Journal of Applied Physics,1976,47(9):3963-3970. doi: 10.1063/1.323218
    [22]
    马慧敏,刘长根,董娇娇. 液滴冲击液面变形特征及其能量转化研究[J]. 水动力学研究与进展(A辑),2019,34(3):283-290. doi: 10.16076/j.cnki.cjhd.2019.03.002

    MA H M,LIU C G,DONG J J. Study of deformation characteristics and energy conversion during the process of droplet impacting on liquid surface[J]. Chinese Journal of Hydrodynamics,2019,34(3):283-290. doi: 10.16076/j.cnki.cjhd.2019.03.002
    [23]
    HASEGAWA K,NARA T. Energy conservation during single droplet impact on deep liquid pool and jet formation[J]. AIP Advances,2019,9(8):085218. doi: 10.1063/1.5113587
    [24]
    XU M J,LI C H,WU C P,et al. Regimes during single water droplet impacting on hot ethanol surface[J]. International Journal of Heat and Mass Transfer,2018,116:817-824. doi: 10.1016/j.ijheatmasstransfer.2017.09.030
    [25]
    徐明俊. 单液滴与着火液体相互作用动力学特性研究[D]. 合肥: 中国科学技术大学, 2018.

    XU M J. Study of drop impact dynamics on burning liquid[D]. Hefei: University of Science and Technology of China, 2018.
    [26]
    范绪君. 水滴撞击油池动力学特性研究[D]. 合肥: 合肥工业大学, 2019.

    FAN X J. Experimental study of droplet impact dynamics on liquid pool[D]. Hefei: Hefei University of Technology, 2019.
    [27]
    刘东. 高效液滴冲击冷却的研究[D]. 北京: 华北电力大学, 2019.

    LIU D. Investigation on efficient droplet spray cooling[D]. Beijing: North China Electric Power University, 2019. doi: 10.27140/d.cnki.ghbbu.2019.000923
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(1)

    Article Metrics

    Article views (438) PDF downloads(42) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return