Volume 35 Issue 5
Nov.  2021
Turn off MathJax
Article Contents
SHI Y J,PENG C,MI P,et al. Development of internal strain gauge balance with variable cross-section axial force flex beam based on Finite Element Analysis[J]. Journal of Experiments in Fluid Mechanics, 2021,35(5):128-133. doi: 10.11729/syltlx20200109
Citation: SHI Y J,PENG C,MI P,et al. Development of internal strain gauge balance with variable cross-section axial force flex beam based on Finite Element Analysis[J]. Journal of Experiments in Fluid Mechanics, 2021,35(5):128-133. doi: 10.11729/syltlx20200109

Development of internal strain gauge balance with variable cross-section axial force flex beam based on Finite Element Analysis

doi: 10.11729/syltlx20200109
  • Received Date: 2020-09-09
  • Rev Recd Date: 2021-03-26
  • Available Online: 2021-11-15
  • Publish Date: 2021-11-05
  • When the axial section of internal strain gauge balance is applied large load, especially large moment load, the maximum stress of its flex beam often becomes the main factor limiting the maximum load capacity of the balance. This paper introduces the development of a large moment internal strain gauge balance. The flex beam and measuring beam of the axial section are optimized and improved by using finite element simulation analysis. The shape of the flex beam is improved from traditional constant cross section to variable cross section. The thickness of the middle part of the flex beam is reduced, and the thickness of both ends is increased. The maximum stress on the flex beam is reduced on the basis of maintaining the same axial stiffness of the balance. The axial force measuring beam adopts variable section structure, which reduces the strain gradient on the measuring beam. The finite element analysis shows that the stress distribution on the variable-section flex beam is more uniform than that of the traditional flex beam, and the maximum stress at the root of the variable-section flex beam is reduced by more than 20%. The strain gradient on the measuring beam with variable cross section is reduced by 79% compared with that on the beam with constant cross section. The calibration results of the balance are in good agreement with the finite element analysis results, and the wind tunnel force test also shows that the balance has good stability.
  • loading
  • [1]
    ZHAI J N, EWALD B, HUFNAGEL K. An investigation on the interference of internal six-component wind tunnel balances with FEM[C]//Proc of the ICIASF '95 Record. International Congress on Instrumentation in Aerospace Simulation Facilities. 1995. doi: 10.1109/ICIASF.1995.519122
    [2]
    LINDELL M C. Finite Element Analysis of a NASA national transonic facility wind tunnel balance[C]//Proc of the International Symposium on Strain-Gage Balances. 1996.
    [3]
    顾岩,虞伟建. 有限元分析法在风洞天平中的应用[J]. 流体力学实验与测量,1999,13(4):82-86.

    GU Y,YU W J. The application of finite element analysis in wind-tunnel balance[J]. Experiments and Measurements in Fluid Mech-anics,1999,13(4):82-86.
    [4]
    RHEW R D. NASA LaRC strain-gage balance design concepts[C]//Proc of the International Symposium on Strain-Gage Balances. 1996.
    [5]
    RHEW R D. Strain-gage balance axial section design optimization using design of experiments[R]. AIAA 2005-7600, 2005. doi: 10.2514/6.2005-7600
    [6]
    KARKEHABADI R, RHEW R D, HOPE D J. Study and analyses on the structural performance of a balance[R]. NASA/TM-2004-213263, 2004.
    [7]
    胡国风. 应变天平矩形截面元件扭转应变计算准度分析[J]. 实验流体力学,2012,26(6):75-78. doi: 10.3969/j.issn.1672-9897.2012.06.016

    HU G F. Accuracy analysis of the torsion strain calculation of a balance with rectangular cross-section[J]. Journal of Experiments in Fluid Mechanics,2012,26(6):75-78. doi: 10.3969/j.issn.1672-9897.2012.06.016
    [8]
    BOUTEMEDJET A,SAMARDŽIĆ M,ĆURČIĆ D,et al. Wind tunnel measurement of small values of rolling moment using six-component strain gauge balance[J]. Measurement,2018,116:438-450. doi: 10.1016/j.measurement.2017.11.043
    [9]
    WEBB T L, LANDMAN D, BURNS D E, et al. A monolithic internal strain-gage balance design based on design for manufacturability[R]. AIAA 2019-3154, 2019. doi: 10.2514/6.2019-3154
    [10]
    BRET J F, LECONTE P, VIEIRA J P, et al. Rotating shaft balances for CRORs and propellers[R]. AIAA 2015-1790, 2015. doi: 10.2514/6.2015-1790
    [11]
    任宗金,张亚娟,张军,等. 大长径比模型多维气动力测量天平设计[J]. 传感器与微系统,2019,38(2):56-58.

    REN Z J,ZHANG Y J,ZHANG J,et al. Design of multi-dimensional aerodynamic force measurement balance of large length-diameter ratio model[J]. Transducer and Microsystem Technologies,2019,38(2):56-58.
    [12]
    SWAPNA L,BHARATH K,SURESH B S. Shape optimization of a drag force element of a force transducer for wind tunnel measurements[J]. Journal of Mechanical Engineering and Auto-mation,2015,5(3B):33-38. doi: 10.5923/c.jmea.201502.07
    [13]
    闫万方,蒋坤,张江. 基于减小轴向力测量干扰的高精度测力天平研制[J]. 实验流体力学,2018,32(6):61-67. doi: 10.11729/syltlx20180082

    YAN W F,JIANG K,ZHANG J. Development of a six-component wind tunnel balance with lower interference on axial force measurement[J]. Journal of Experiments in Fluid Mechanics,2018,32(6):61-67. doi: 10.11729/syltlx20180082
    [14]
    熊琳,宫建,王金印,等. 小直径杆式应变天平轴向力元件设计问题的探讨[J]. 实验流体力学,2013,27(5):75-78. doi: 10.3969/j.issn.1672-9897.2013.05.014

    XIONG L,GONG J,WANG J Y,et al. Discussion about axial force element design of bending-beam strain-gauge balance with small diameter[J]. Journal of Experiments in Fluid Mechanics,2013,27(5):75-78. doi: 10.3969/j.issn.1672-9897.2013.05.014
    [15]
    史玉杰,陈竹,田正波. 横Ⅱ型梁在风洞应变天平阻力结构上的应用[J]. 实验流体力学,2012,26(4):83-86. doi: 10.3969/j.issn.1672-9897.2012.04.017

    SHI Y J,CHEN Z,TIAN Z B. The application of thwart Ⅱ beam to axial force structure of wind tunnel strain gauge balance[J]. Journal of Experiments in Fluid Mechanics,2012,26(4):83-86. doi: 10.3969/j.issn.1672-9897.2012.04.017
    [16]
    田正波,王超. 杆式应变天平弧形断开槽结构特性研究[J]. 机械工程师,2019(3):87-89.

    TIAN Z B,WANG C. Research on structural characteristics of strain gauge balance with curved groove[J]. Mechanical Engineer,2019(3):87-89.
    [17]
    贺德馨. 风洞天平[M]. 北京: 国防工业出版社, 2001: 80

    HE D X. Wind tunnel balance[M]. Beijing: National Defense Industry Press, 2001: 80.
    [18]
    中国人民解放军总装备部. 风洞应变天平规范GJB2244A-2011[S]. 北京: 总装备部军标出版发行部, 2011
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(4)

    Article Metrics

    Article views (455) PDF downloads(26) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return