Volume 35 Issue 2
Apr.  2021
Turn off MathJax
Article Contents
GAO Limin, LIU Zhe, CAI Ming, et al. Study on two-dimensional control technology of flow field in high-load compressor cascade test[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(2): 13-21. doi: 10.11729/syltlx20200099
Citation: GAO Limin, LIU Zhe, CAI Ming, et al. Study on two-dimensional control technology of flow field in high-load compressor cascade test[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(2): 13-21. doi: 10.11729/syltlx20200099

Study on two-dimensional control technology of flow field in high-load compressor cascade test

doi: 10.11729/syltlx20200099
  • Received Date: 2020-08-02
  • Rev Recd Date: 2020-12-02
  • Publish Date: 2021-04-01
  • The boundary-layer attached to the side wall of the linear cascade wind tunnel makes the flow passage contract, which destroys the two-dimensionality characteristic of the cascade flow field. The back pressure gradient of the compressor cascade intensifies the contraction, and the contraction becomes more significant with the increase of load. This paper conducts a numerical study on high-load compressor cascade, studies the factors affecting the two-dimensionality of the cascade blowing experiment and the effect of end wall suction at different axial positions, and explores distributed suction. The results show that the secondary flow at the end wall of the conventional cascade squeezes the main flow, accelerates it, reduces the pressure diffusion, and causes the flow field to be distorted. The total pressure loss deviation is as small as 23%. Front and middle suction can control the two-dimensionality of the cascade as a whole, but the spanwise two-dimensional zone is narrow; the tail suction outlet is wider in the spanwise two-dimensional zone, but it only partially improves the two-dimensionality near the tail edge. The front suction is well controlled at full incidence angle, the middle suction has better negative incidence angle characteristics, and the tail suction flow varies linearly with the angle of incidence. Distributed suction can control the two-dimensionality as a whole and broaden the two-dimensional area, and thus this technique is worth exploring and applying.
  • loading
  • [1]
    楚武利, 刘前智, 胡春波. 航空叶片机原理[M]. 西安: 西北工业大学出版社, 2009.
    [2]
    于兰兰. 高压压气机平面叶栅实验与数值计算研究[D]. 南京: 南京航空航天大学, 2009.

    YU L L. Research on experiment and numerical simulation of cascades for one high-pressure compressor[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2009.
    [3]
    高丽敏, 蔡明. 压气机叶型的风洞试验研究[J]. 风机技术, 2018, 60(4): 9-15. doi: 10.16492/j.fjjs.2018.04.0002

    GAO L M, CAI M. Experimental investigations of compressor airfoil on cascade wind tunnel[J]. Chinese Journal of Turbo-machinery, 2018, 60(4): 9-15. doi: 10.16492/j.fjjs.2018.04.0002
    [4]
    周亚峰. 可控扩散叶栅设计与试验[J]. 航空发动机, 1994, 20(3): 8-27. https://www.cnki.com.cn/Article/CJFDTOTAL-HKFJ199403002.htm
    [5]
    唐雨萌, 柳阳威, 陆利蓬, 等. 高速高负荷压气机叶栅损失特性实验研究[J]. 工程热物理学报, 2017, 38(8): 1624-1633. https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB201708007.htm

    TANG Y M, LIU Y W, LU L P, et al. Experimental investigation of losses in a high-speed high-loading compressor cascade[J]. Journal of Engineering Thermophysics, 2017, 38(8): 1624-1633. https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB201708007.htm
    [6]
    魏巍, 刘波, 杜炜, 等. 可控扩散叶型与双圆弧叶型实验对比研究[J]. 推进技术, 2017, 38(1): 61-68. doi: 10.13675/j.cnki.tjjs.2017.01.009

    WEI W, LIU B, DU W, et al. Experimental comparison of controlled diffusion airfoils with double circle airfoils[J]. Journal of Propulsion Technology, 2017, 38(1): 61-68. doi: 10.13675/j.cnki.tjjs.2017.01.009
    [7]
    邓熙, 刘波, 张国臣, 等. 轴向密流比对轴流压气机叶栅落后角的影响研究[C]//中国工程热物理学会论文集. 2014.
    [8]
    刘占民. 压气机叶栅密流比效应试验研究[J]. 热能动力工程, 1987, 2(6): 9-17. https://www.cnki.com.cn/Article/CJFDTOTAL-RNWS198706001.htm

    LIU Z M. An experimental study of the density-flow ratio effect of compressor cascades[J]. Journal of Engineering for Thermal Energy and Power, 1987, 2(6): 9-17. https://www.cnki.com.cn/Article/CJFDTOTAL-RNWS198706001.htm
    [9]
    邓熙, 刘波, 马乃行. 高亚声速大弯角轴流压气机平面叶栅损失模型研究[J]. 推进技术, 2015, 36(9): 1302-1308. doi: 10.13675/j.cnki.tjjs.2015.09.004

    DENG X, LIU B, MA N X. Investigation of loss model applicable to large range of high subsonic cascades in axial-flow compressor[J]. Journal of Propulsion Technology, 2015, 36(9): 1302-1308. doi: 10.13675/j.cnki.tjjs.2015.09.004
    [10]
    刘前智, 严汝群. 轴向密流比对叶栅性能影响的研究[J]. 西北工业大学学报, 1989, 7(2): 129-137. https://www.cnki.com.cn/Article/CJFDTOTAL-XBGD198902000.htm

    LIU Q Z, YAN R Q. Investigations of the effects of axial velocity density ratio on cascade performances of the compressor[J]. Journal of Northwestern Polytechnical University, 1989, 7(2): 129-137. https://www.cnki.com.cn/Article/CJFDTOTAL-XBGD198902000.htm
    [11]
    SENTHIL KUMARAN R, KAMBLE S, SWAMY K M M, et al. Effect of axial velocity density ratio on the performance of a controlled diffusion airfoil compressor cascade[J]. International Journal of Turbo & Jet-Engines, 2015, 32(4): 305-317. doi: 10.1515/tjj-2014-0036
    [12]
    SONG B, NG W. Influence of axial velocity density ratio in cascade testing of supercritical compressor blades[R]. AIAA 2004-3414, 2004. doi: 10.2514/6.2004-3414
    [13]
    POLLARD D, GOSTELOW J P. Some experiments at low speed on compressor cascades[J]. Journal of Engineering for Power, 1967, 89(3): 427-436. doi: 10.1115/1.3616709
    [14]
    ERWIN J R, EMERY J C. Effect of tunnel configuration and testing technique on cascade performance[R]. NACA TR-1016, 1951.
    [15]
    BRIGGS W B. Effect of Mach number on the flow and application of compressibility corrections in a two-dimensional subsonic-transonic compressor cascade having varied porous-wall suction at the blade tips[R]. NACA TN-2649, 1952.
    [16]
    HERRIG L J, EMERY J C, ERWIN J R. Systematic two-dimensional cascade tests of NACA 65-series compressor blades at low speeds[R]. NACA TN-3916, 1957.
    [17]
    STARKEN H, BREUGELMANS F A E, SCHIMMING P. Investigation of the axial velocity density ratio in a high turning cascade[C]//Proceedings of ASME 1975 International Gas Turbine Conference and Products Show. 2015. doi: 10.1115/75-GT-25
    [18]
    姜正礼. 轴向速度密度比AVDR对压气机叶栅性能影响的试验研究[J]. 燃气涡轮试验与研究, 1995, 8(4): 4-9. https://www.cnki.com.cn/Article/CJFDTOTAL-RQWL199504001.htm
    [19]
    王东, 刘建明, 李昊, 等. 扩压平面叶栅端壁流动控制仿真与试验研究[C]//第四届全国非定常空气动力学学术会议论文集. 2018.
    [20]
    陈绍文, 郭爽, 宋宇飞, 等. 附面层抽吸对高负荷扩压叶栅流动及负荷的影响[J]. 工程热物理学报, 2009, 30(9): 1479-1481. doi: 10.3321/j.issn:0253-231X.2009.09.011

    CHEN S W, GUO S, SONG Y F, et al. Effects of boundary layer suction on the flow and load of highly-loaded compressor cascade[J]. Journal of Engineering Thermophysics, 2009, 30(9): 1479-1481. doi: 10.3321/j.issn:0253-231X.2009.09.011
    [21]
    宋彦萍, 陈浮, 赵桂杰, 等. 吸气槽道形状对扩压叶栅性能的影响[J]. 工程热物理学报, 2005, 26(5): 761-763. doi: 10.3321/j.issn:0253-231X.2005.05.013

    SONG Y P, CHEN F, ZHAO G J, et al. Effects of suction slot geometries on the performance of compressor cascade[J]. Journal of Engineering Thermophysics, 2005, 26(5): 761-763. doi: 10.3321/j.issn:0253-231X.2005.05.013
    [22]
    梁田, 刘波, 茅晓晨. 附面层抽吸对叶栅角区分离流动的控制研究[J]. 推进技术, 2019, 40(9): 1972-1981. doi: 10.13675/j.cnki.tjjs.180628

    LIANG T, LIU B, MAO X C. Investigation of corner separation control for cascade with boundary layer suction[J]. Journal of Propulsion Technology, 2019, 40(9): 1972-1981. doi: 10.13675/j.cnki.tjjs.180628
    [23]
    陆华伟, 张海鑫, 郭爽, 等. 下端壁流向槽抽吸对高负荷扇形扩压叶栅性能影响的数值研究[J]. 推进技术, 2018, 39(8): 1753-1760. doi: 10.13675/j.cnki.tjjs.2018.08.009

    LU H W, ZHANG H X, GUO S, et al. Numerical study on effects of streamwise groove suction in lower endwall in a highly-loaded sectorial compressor cascade[J]. Journal of Propulsion Technology, 2018, 39(8): 1753-1760. doi: 10.13675/j.cnki.tjjs.2018.08.009
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(22)  / Tables(2)

    Article Metrics

    Article views (287) PDF downloads(22) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return