Volume 35 Issue 2
Apr.  2021
Turn off MathJax
Article Contents
WANG Jin, ZHOU Ling, JI Lucheng. Brief introduction and prospect of calculation methods for one-dimensional characteristics of axial flow compressor[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(2): 1-12. doi: 10.11729/syltlx20200088
Citation: WANG Jin, ZHOU Ling, JI Lucheng. Brief introduction and prospect of calculation methods for one-dimensional characteristics of axial flow compressor[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(2): 1-12. doi: 10.11729/syltlx20200088

Brief introduction and prospect of calculation methods for one-dimensional characteristics of axial flow compressor

doi: 10.11729/syltlx20200088
  • Received Date: 2020-07-18
  • Rev Recd Date: 2020-10-12
  • Publish Date: 2021-04-01
  • One-dimensional (1-D) characteristic calculation, as a key link of the compressor design system, plays an important role in the initial design stage of the compressor. As a highly empirical engineering approximate calculation method, one-dimensional performance calculation requires the support of a large amount of experimental data. The quality of the empirical correlation obtained from the experimental data is the key to the success of the one-dimensional calculation. By fully investigating the 1-D performance analysis methods in Europe and the United States, which are mainly based on the stage stacking method and the meanline method, this paper reviews the origin of the 1-D characteristic calculation methods of the axial compressor, and discusses its development trend and research status. In addition, the basic principles of the 1-D characteristic calculation methods and the classic empirical correlations used are summarized, and the direction of future development of 1-D performance analysis of the compressor is pointed out.
  • loading
  • [1]
    MOLINARI M, DAWES W N. Review of evolution of compressor design process and future perspectives[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2006, 220(6): 761-771. doi: 10.1243/09544062jmes298
    [2]
    刘永泉, 刘太秋, 季路成. 航空发动机风扇/压气机技术发展的若干问题与思考[J]. 航空学报, 2015, 36(8): 2563-2576. doi: 10.7527/S1000-6893.2015.0078

    LIU Y Q, LIU T Q, JI L C. Some problems and thoughts in the development of aero-engine fan/compressor[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(8): 2563-2576. doi: 10.7527/S1000-6893.2015.0078
    [3]
    HORLOCK J H, DENTON J D. A review of some early design practice using computational fluid dynamics and a current perspective[J]. Journal of Turbomachinery, 2005, 127(1): 5-13. doi: 10.1115/1.1650379
    [4]
    桂幸民, 滕金芳, 刘宝杰等. 航空压气机气动热力学理论与应用[M]. 上海: 上海交通大学出版社, 2014.

    GUI X M, TENG J F, LIU B J, et al. Compressor aerothermodynamics and its applications in aircraft engines[M]. Shanghai: Shanghai Jiao Tong University Press, 2014.
    [5]
    GALLIMORE S J. Axial flow compressor design[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 1999, 213(5): 437-449. doi: 10.1243/0954406991522680
    [6]
    NASA. 轴流压气机气动设计[M]. 秦鹏, 译. 北京: 国防工业出版社, 1975.
    [7]
    JOHNSEN I A, BULLOCK R O. Aerodynamic design of axial-flow compressors[R]. NASA SP-36, 1965.
    [8]
    HOWELL A R, BONHAM R P. Overall and stage characteristics of axial-flow compressors[J]. Proceedings of the Institution of Mechanical Engineers, 1950, 163(1): 235-248. doi: 10.1243/pime_proc_1950_163_026_02
    [9]
    FINGER H B, DUGAN J F J. Analysis of stage matching and off-design performance of multistage axial-flow compressors[R]. NACA RM E52D07, 1952.
    [10]
    MEDEIROS A A, BENSER W A, HATCH J E. Analysis of off-design performance of a 16-stage axial-flow compressor with various blade modifications[R]. NACA RM E52L03, 1953.
    [11]
    GEYE P R, VOIT R P A. Investigation of a high-pressure-ratio eight-stage axial-flow research compressor with two transonic inlet stages. IV-modification of aerodynamic design and prediction of performance[R]. NACA RM E55B28, 1955.
    [12]
    STANDAHAR M R, GEYE P R. Investigation of a high-pressure-ratio eight-stage axial-flow research compressor with two transonic inlet stages. V-preliminary analysis of over all performance of modified compressor[R]. NACA RM E55A03, 1955.
    [13]
    CREVELING H F, CARMODY R H. Axial flow compressor computer program for calculating off-design performance(Program IV)[R]. NASA CR-72427, 1968.
    [14]
    HOWELL A R, CALVERT W J. A new stage stacking technique for axial-flow compressor performance prediction[J]. Journal of Engineering for Power, 1978, 100(4): 698-703. doi: 10.1115/1.3446425
    [15]
    STEINKE R J. A computer code for predicting multistage axial-flow compressor performance by a meanline stage-stacking method[R]. NASA-TP-2020, 1982.
    [16]
    VERES J. Axial and centrifugal compressor mean line flow analysis method[C]//Proc of the 47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition. 2009. doi: 10.2514/6.2009-1641
    [17]
    JACK T K, ELDER R L. A modified stage-stacking method for multi-stage axial flow compressor calculations[J]. International Journal of Scientific & Engineering Research, 2012, 3(3): 1-7. http://www.mendeley.com/research/modified-stagestacking-method-multi-stage-axial-flow-compressor-calculations-pressure-coefficient/
    [18]
    DAHLQUIST A N. Investigation of losses prediction methods in 1D for axial gas turbines[D]. Sweden: Lund University, 1990.
    [19]
    SMITH S L. One-dimensional mean line code technique to calculate stage-by-stage compressor characteristics[D]. Knoxville: University of Tennessee, 1999.
    [20]
    MADADI A, HAJILOUY BENISI A. Performance predicting modeling of axial-flow compressor at design and off-design conditions[C]//Proc of the Volume 6: Turbomachinery, Parts A, B, and C, Anerucab Sicuett of Mechanical Engineers Digital Collection. 2008. doi: 10.1115/gt2008-50550
    [21]
    ASLI M, TOUSI A M. Performance prediction of axial flow turbomachines using a modified one dimensional method[J]. International Journal of Scientific & Engineering Research, 2013, 4(7): 1486-1491. http://ijser.org/researchpaper/Performance-Prediction-of-Axial-Flow-Turbomachines-Using-a-Modified-One-Dimensional-Method.pdf
    [22]
    KIDIKIAN J, REGGIO M. Off-design prediction of transonic axial compressors: part 1-mean-line code and tuning factors[C]//Proc of the Volume 2A: Turbomachinery. American Society of Mechanical Engineers. 2018. doi: 10.1115/gt2018-75124
    [23]
    KIDIKIAN J, REGGIO M. Off-design prediction of transonic axial compressors: part 2-generalized mean-line loss modelling methodology[C]//Proc of the Volume 2A: Turbomachinery. American Society of Mechanical Engineers. 2018. doi: 10.1115/gt2018-75125
    [24]
    MILLER A S. Compressor conceptual design optimization[D]. Atlanta: Georgia Institute of Technology, 2015.
    [25]
    WHITE N M, TOURLIDAKIS A, ELDER R L. Axial compressor performance modelling with a quasi-one-dimensional approach[J]. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2002, 216(2): 181-193. doi: 10.1243/09576500260049197
    [26]
    JOHNSON M S. One-dimensional, stage-by-stage, axial compressor performance model[C]//Proc of the Volume 1: Turbomachinery. American Society of Mechanical Engineers. 1991. doi: 10.1115/91-gt-192
    [27]
    ASLI M, TOUSI A M. Performance analysis of axial flow compressor and part load consideration in a gas turbine application[J]. Journal of Thermal Science and Technology, 2013, 8(3): 476-487. doi: 10.1299/jtst.8.476
    [28]
    ROZENDAAL A V. A computer program for the coupled implementation of meanline and throughflow methods to simplify the aerodynamic design of multistage axial compressors[D]. Daytona Beach: Embry-Riddle Aeronautical University, 2016.
    [29]
    李志刚, 陶增元, 丁康乐, 等. 一种改进的变几何压气机特性计算方法[J]. 航空发动机, 2004, 30(4): 7-9. doi: 10.3969/j.issn.1672-3147.2004.04.003

    LI Z G, TAO Z Y, DING K L, et al. Simulation of variable geometry compressor characteristics[J]. Aeroengine, 2004, 30(4): 7-9. doi: 10.3969/j.issn.1672-3147.2004.04.003
    [30]
    李立君, 黄杰, 唐狄毅, 等. 轴流压气机特性预测[J]. 西北工业大学学报, 2003, 21(1): 71-73. doi: 10.3969/j.issn.1000-2758.2003.01.018

    LI L J, HUANG J, TANG D Y, et al. An accurate method for predicting performance characteristics of multi-stage axial compressor[J]. Journal of Northwestern Polytechnical University, 2003, 21(1): 71-73. doi: 10.3969/j.issn.1000-2758.2003.01.018
    [31]
    斯夏依, 钟勇健, 滕金芳, 等. 十级高压压气机气动方案设计的优化[J]. 流体机械, 2016, 44(6): 24-28, 16. doi: 10.3969/j.issn.1005-0329.2016.06.005

    SI X Y, ZHONG Y J, TENG J F, et al. Aerodynamic preliminary design optimization of ten-stage high pressure compressor[J]. Fluid Machinery, 2016, 44(6): 24-28, 16. doi: 10.3969/j.issn.1005-0329.2016.06.005
    [32]
    丁伟. 基于多目标遗传算法的轴流压气机气动优化设计技术研究[D]. 西安: 西北工业大学, 2006.

    DING W. Research on aerodynamic optimization design technology of axial flow compressor based on multi-objective genetic algorithm[D]. Xi'an: Northwestern Polytechnical University, 2006.
    [33]
    CAI Y H, WANG H J, TANG D Y, et al. A new method for predicting performance of axial-flow compressor[C]//Proceedings of ASME 1985 Beijing International Gas Turbine Symposium and Exposition. 2015. doi: 10.1115/85-IGT-23
    [34]
    崔凝, 王兵树, 马永光, 等. 变几何多级轴流压气机动态仿真模型的研究与应用[J]. 动力工程, 2007, 27(6): 856-862. doi: 10.3321/j.issn:1000-6761.2007.06.007

    CUI N, WANG B S, MA Y G, et al. Study and application of dynamic simulation models for multistage axial-flow compre-ssors with variable geometry[J]. Journal of Power Engineering, 2007, 27(6): 856-862. doi: 10.3321/j.issn:1000-6761.2007.06.007
    [35]
    陈江, 刘太秋, 李孝堂, 等. 五级轴流压气机气动设计数值研究[J]. 工程热物理学报, 2010, 31(6): 943-946. https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB201006013.htm

    CHEN J, LIU T Q, LI X T, et al. Aerodynamic design of five stage axial compressor by numerical simulation[J]. Journal of Engineering Thermophysics, 2010, 31(6): 943-946. https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB201006013.htm
    [36]
    黄雄武, 兰发祥, 雷丕霓, 等. 高负荷高效率压气机级特性计算研究[J]. 燃气涡轮试验与研究, 2013, 26(2): 28-32. doi: 10.3969/j.issn.1672-2620.2013.02.008

    HUANG X W, LAN F X, LEI P N, et al. Performance simulation and computation of high loading and high efficiency compressor stage[J]. Gas Turbine Experiment and Research, 2013, 26(2): 28-32. doi: 10.3969/j.issn.1672-2620.2013.02.008
    [37]
    钟勇健, 滕金芳, 羌晓青, 等. 级间引气对一维方案压气机流道和性能的影响[J]. 节能技术, 2014, 32(2): 112-115. https://www.cnki.com.cn/Article/CJFDTOTAL-JNJS201402005.htm

    ZHONG Y J, TENG J F, QIANG X Q, et al. Effects of inter-stage bleed rate on compressor flow path and performance by mean line method[J]. Energy Conservation Technology, 2014, 32(2): 112-115. https://www.cnki.com.cn/Article/CJFDTOTAL-JNJS201402005.htm
    [38]
    史磊, 刘波, 张鹏, 等. 商用发动机10级高压压气机一维特性优化设计[J]. 航空动力学报, 2013, 28(7): 1564-1569. doi: 10.13224/j.cnki.jasp.2013.07.031

    SHI L, LIU B, ZHANG P, et al. One-dimensional characteristic optimization design for ten-stage high pressure compressor in commercial engine[J]. Journal of Aerospace Power, 2013, 28(7): 1564-1569. doi: 10.13224/j.cnki.jasp.2013.07.031
    [39]
    张军. 多级轴流压气机方案设计与特性计算研究[D]. 北京: 北京理工大学, 2016.

    ZHANG J. Preliminary design and performance calculation for multistage axial flow compressor[D]. Beijing: Beijing Institute of Technology, 2016.
    [40]
    夏凯. 轴流压气机转角气动特性计算的级叠加方法研究[D]. 北京: 中国舰船研究院, 2019.

    XIA K. Stage-stacking method for calculating aerodynamic characteristics of rotating angle of axial compressor[D]. Beijing: China Ship Research and Development Academy, 2019.
    [41]
    PEYVAN A, HAJILOUY BENISI A, TECHNOLOGY S U O, et al. Axial-flow compressor performance prediction in design and off-design conditions through 1-D and 3-D modeling and experimental study[J]. Journal of Applied Fluid Mecha-nics, 2016, 9(7): 2149-2160. doi: 10.18869/acadpub.jafm.68.236.25222
    [42]
    WRIGHT P I, MILLER D C. An improved compressor performance prediction model[J]. Proceedings of the Institution of Mechanical Engineers European Conference: Turbomachinery-Latest Developments in a Changing Scene, 1991, 69-82. http://www.zhangqiaokeyan.com/ntis-science-report_other_thesis/02071463893.html
    [43]
    MILLER D C, WASDELL D L. Off-design prediction of compressor blade loss[J]. Proceedings of the Institution of Mechanical Engineers International Conference: Turbomachinery-Efficiency Prediction and Improvement, 1987, 249-260. http://www.researchgate.net/publication/292201970_Off-design_prediction_of_compressor_blade_losses
    [44]
    DAVIS W R. A computer program for analysis and design of the flow in turbomachinery, Part B-loss and deviation correlations[R]. Carleton University Report ME A70-1, 1970.
    [45]
    CUMPSTY N A. Compressor Aerodynamics[M]. Essex: Longman Scientific and Technical, 1989.
    [46]
    彭泽琰, 刘刚, 桂幸民, 等. 航空燃气轮机原理[M]. 北京: 国防工业出版社, 2008.
    [47]
    ROLAND W, MILLAR D A J. Through flow calculations based on matrix inversion: loss prediction[R]. AGARD-CP-195, 1976.
    [48]
    AUNGIER R H, FAROKHI S. Axial-flow compressors: a strategy for aerodynamic design and analysis[J]. Applied Mechanics Reviews, 2004, 57(4): B22. doi: 10.1115/1.1786589
    [49]
    SWAN W C. A practical method of predicting transonic-compressor performance[J]. Journal of Engineering for Gas Turbines and Power, 1961, 83(3): 322-330. http://www.researchgate.net/publication/275376095_A_Practical_Method_of_Predicting_Transonic-Compressor_Performance
    [50]
    DENTON J D. The 1993 IGTI scholar lecture: loss mechanisms in turbomachines[J]. Journal of Turbomachinery, 1993, 115(4): 621-656. doi: 10.1115/1.2929299
    [51]
    LIEBLEIN S, ROUDEBUSH W H. Theoretical loss relations for low-speed two-dimensional-cascade flow[R]. NACA TN 3662, 1956.
    [52]
    KOCH C C, SMITH L H. Loss sources and magnitudes in axial-flow compressors[J]. Journal of Engineering for Power, 1976, 98(3): 411-424. doi: 10.1115/1.3446202
    [53]
    JANSEN W, MOFFATT W C. The off-design analysis of axial-flow compressors[J]. Journal of Engineering for Power, 1967, 89(4): 453-462. doi: 10.1115/1.3616712
    [54]
    MILLER G R, LEWIS G W, HARTMANN M J. Shock losses in transonic compressor blade rows[J]. Journal of Engineering for Power, 1961, 83(3): 235-241. doi: 10.1115/1.3673182
    [55]
    STORER J A, CUMPSTY N A. Tip leakage flow in axial compressors[J]. Journal of Turbomachinery, 1991, 113(2): 252-259. doi: 10.1115/1.2929095
    [56]
    STORER J A, CUMPSTY N A. An approximate analysis and prediction method for tip clearance loss in axial compressors[C]//Proceedings of ASME 1993 International Gas Turbine and Aeroengine Congress and Exposition. 2015. doi: 10.1115/93-GT-140
    [57]
    MELLOR G L, WOOD G M. An axial compressor end-wall boundary layer theory[J]. Journal of Basic Engineering, 1971, 93(2): 300-314. doi: 10.1115/1.3425231
    [58]
    BALSA T F, MELLOR G L. The simulation of axial compressor performance using an annulus wall boundary layer theory[J]. Journal of Engineering for Power, 1975, 97(3): 305-317. doi: 10.1115/1.3445989
    [59]
    HIRSCH C. Flow prediction in axial flow compressors including end-wall boundary layers[C]//Proceedings of ASME 1976 In-ternational Gas Turbine and Fluids Engineering Conference. 2015. doi: 10.1115/76-GT-72
    [60]
    HVBNER J, FOTTNER L. Influence of tip-clearance, aspect ratio, blade loading, and inlet boundary layer on secondary losses in compressor cascades[C]//Proceedings of ASME 1996 International Gas Turbine and Aeroengine Congress and Exhibition. 2015. doi: 10.1115/96-GT-505
    [61]
    KOCH C C. Stalling pressure rise capability of axial flow compressor stages[J]. Journal of Engineering for Power, 1981, 103(4): 645-656. doi: 10.1115/1.3230787
    [62]
    McKENZIE A B. Axial flow fans and compressors: aerodynamic design and performance[M]. Burlington: Ashgate Publishing Company, 1997.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)

    Article Metrics

    Article views (552) PDF downloads(81) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return