Volume 35 Issue 1
Feb.  2021
Turn off MathJax
Article Contents
LIU Yu, XIAO Baoguo, WANG Lan, et al. Standing stability enhancement method of oblique detonation waves in a confined space and its experimental validation[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(1): 109-116. doi: 10.11729/syltlx20200084
Citation: LIU Yu, XIAO Baoguo, WANG Lan, et al. Standing stability enhancement method of oblique detonation waves in a confined space and its experimental validation[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(1): 109-116. doi: 10.11729/syltlx20200084

Standing stability enhancement method of oblique detonation waves in a confined space and its experimental validation

doi: 10.11729/syltlx20200084
  • Received Date: 2020-07-16
  • Rev Recd Date: 2020-10-20
  • Publish Date: 2021-02-25
  • Hypersonic ramjets with the combustion mode of oblique detonation are promising in the high-Mach-number air-breathing propulsion field. It is very important to overcome the standing stability problem of oblique detonation waves for realizing this technical scheme. A standing stability enhancement method of oblique detonation waves in a confined space is proposed and validated in a direct-connect experiment under the Ma 8.0 near-real condition. Supersonic premixed gases are produced by using array nozzles and a non-reacting gas layer is formed by cutting off the fuel supply in the near-wall nozzle units. After the oblique detonation wave enters the near-wall region, it decays to an inert shock wave due to the presence of the non-reaction gas layer and therefore its Mach reflection on the wall can be significantly weakened to avoid choking flow. Through this method, the standing stability of oblique detonation waves is well enhanced and a long-time standing oblique detonation wave is obtained under the near-real condition.
  • loading
  • [1]
    PRATT D T, HUMPHREY J W, GLENN D E. Morphology of standing oblique detonation waves[J]. Journal of Propulsion and Power, 1991, 7(5): 837-845. doi: 10.2514/3.23399
    [2]
    GHORBANIAN K, STERLING J D. Influence of formation processes on oblique detonation wave stabilization[J]. Journal of Propulsion and Power, 1996, 12(3): 509-517. doi: 10.2514/3.24064
    [3]
    ASHFORD S A, EMANUEL G. Wave angle for oblique detonation waves[J]. Shock Waves, 1994, 3(4): 327-329. doi: 10.1007/bf01415831
    [4]
    VERREAULT J, HIGGINS A J, STOWE R A. Formation and structure of steady oblique and conical detonation waves[J]. AIAA Journal, 2012, 50(8): 1766-1772. doi: 10.2514/1.j051632
    [5]
    CHOI J Y, SHIN E J R, JEUNG I S. Unstable combustion induced by oblique shock waves at the non-attaching condition of the oblique detonation wave[J]. Proceedings of the Combustion Institute, 2009, 32(2): 2387-2396. doi: 10.1016/j.proci.2008.06.212
    [6]
    KASAHARA J, HORⅡ T, ENDO T, et al. Experimental observation of unsteady H2-O2 combustion phenomena around hypersonic projectiles using a multiframe camera[J]. Symposium (International) on Combustion, 1996, 26(2): 2903-2908. doi: 10.1016/s0082-0784(96)80131-7
    [7]
    KASAHARA J, FUJIWARA T, ENDO T, et al. Chapman-jouguet oblique detonation structure around hypersonic projectiles[J]. AIAA Journal, 2001, 39(8): 1553-1561. doi: 10.2514/2.1480
    [8]
    KASAHARA J, ARAI T, CHIBA S, et al. Criticality for stabilized oblique detonation waves around spherical bodies in acetylene/oxygen/krypton mixtures[J]. Proceedings of the Combustion Institute, 2002, 29(2): 2817-2824. doi: 10.1016/s1540-7489(02)80344-3
    [9]
    MAEDA S, KASAHARA J, MATSUO A. Oblique detonation wave stability around a spherical projectile by a high time resolution optical observation[J]. Combustion and Flame, 2012, 159(2): 887-896. doi: 10.1016/j.combustflame.2011.09.001
    [10]
    MAEDA S, SUMIYA S, KASAHARA J, et al. Initiation and sustaining mechanisms of stabilized Oblique Detonation Waves around projectiles[J]. Proceedings of the Combustion Institute, 2013, 34(2): 1973-1980. doi: 10.1016/j.proci.2012.05.035
    [11]
    MAEDA S, SUMIYA S, KASAHARA J, et al. Scale effect of spherical projectiles for stabilization of oblique detonation waves[J]. Shock Waves, 2015, 25(2): 141-150. doi: 10.1007/s00193-015-0549-4
    [12]
    TENG H H, JIANG Z L. On the transition pattern of the oblique detonation structure[J]. Journal of Fluid Mechanics, 2012, 713: 659-669. doi: 10.1017/jfm.2012.478
    [13]
    TENG H H, JIANG Z L, NG H D. Numerical study on unstable surfaces of oblique detonations[J]. Journal of Fluid Mechanics, 2014, 744: 111-128. doi: 10.1017/jfm.2014.78
    [14]
    TENG H H, NG H D, LI K, et al. Evolution of cellular structures on oblique detonation surfaces[J]. Combustion and Flame, 2015, 162(2): 470-477. doi: 10.1016/j.combustflame.2014.07.021
    [15]
    YANG P F, TENG H H, JIANG Z L, et al. Effects of inflow Mach number on oblique detonation initiation with a two-step induction-reaction kinetic model[J]. Combustion and Flame, 2018, 193: 246-256. doi: 10.1016/j.combustflame.2018.03.026
    [16]
    LIU Y, WANG L, XIAO B G, et al. Hysteresis phenomenon of the oblique detonation wave[J]. Combustion and Flame, 2018, 192: 170-179. doi: 10.1016/j.combustflame.2018.02.010
    [17]
    LU F K, FAN H Y, WILSON D R. Detonation waves induced by a confined wedge[J]. Aerospace Science and Technology, 2006, 10(8): 679-685. doi: 10.1016/j.ast.2006.06.005
    [18]
    SISLIAN J P, SCHIRMER H, DUDEBOUT R, et al. Propulsive performance of hypersonic oblique detonation wave and shock-induced combustion ramjets[J]. Journal of Propulsion and Power, 2001, 17(3): 599-604. doi: 10.2514/2.5783
    [19]
    SCHWARTZENTRUBER T E, SISLIAN J P, PARENT B. Suppression of premature ignition in the premixed inlet flow of a shcramjet[J]. Journal of Propulsion and Power, 2005, 21(1): 87-94. doi: 10.2514/1.7003
    [20]
    SISLIAN J P, MARTENS R P, SCHWARTZENTRUBER T E, et al. Numerical simulation of a real shcramjet flowfield[J]. Journal of Propulsion and Power, 2006, 22(5): 1039-1048. doi: 10.2514/1.14895
    [21]
    ALEXANDER D C, SISLIAN J P. Computational study of the propulsive characteristics of a shcramjet engine[J]. Journal of Propulsion and Power, 2008, 24(1): 34-44. doi: 10.2514/1.29951
    [22]
    EVANS J S, SCHEXNAYDER C J Jr. Influence of chemical kinetics and unmixedness on burning in supersonic hydrogen flames[J]. AIAA Journal, 1980, 18(2): 188-193. doi: 10.2514/3.50747
    [23]
    FANG Y S, HU Z M, TENG H H, et al. Numerical study of inflow equivalence ratio inhomogeneity on oblique detonation formation in hydrogen-air mixtures[J]. Aerospace Science and Technology, 2017, 71: 256-263. doi: 10.1016/j.ast.2017.09.027
    [24]
    IWATA K, NAKAYA S, TSUE M. Wedge-stabilized oblique detonation in an inhomogeneous hydrogen-air mixture[J]. Proceedings of the Combustion Institute, 2017, 36(2): 2761-2769. doi: 10.1016/j.proci.2016.06.094
    [25]
    BEN-DOR G. Shock wave reflection phenomena[M]. 2nd edition. Berlin: Springer, 2007.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(17)

    Article Metrics

    Article views (173) PDF downloads(11) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return