Volume 35 Issue 3
Jun.  2021
Turn off MathJax
Article Contents
DONG Jingang, ZHANG Chenkai, XIE Feng, et al. Experimental investigations on the separation interference characteristics of supersonic internal weapon releasing from the aircraft[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(3): 46-51. doi: 10.11729/syltlx20200080
Citation: DONG Jingang, ZHANG Chenkai, XIE Feng, et al. Experimental investigations on the separation interference characteristics of supersonic internal weapon releasing from the aircraft[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(3): 46-51. doi: 10.11729/syltlx20200080

Experimental investigations on the separation interference characteristics of supersonic internal weapon releasing from the aircraft

doi: 10.11729/syltlx20200080
  • Received Date: 2020-07-01
  • Rev Recd Date: 2020-11-05
  • Publish Date: 2021-06-25
  • The internal weapon is subject to the complex interference flow field of the aircraft during the separation of supersonic bombs, and its aerodynamic characteristics are significantly different from the freestream conditions, which will have a certain impact on the safety of the bomb separation. Using the new CTS test technology based on the configuration of the parallel mechanism and the schlieren techniques, the interference characteristics of a new aircraft with a typical bomber layout and a typical air-to-air missile model were studied. Under the influence factors such as the separation altitudes and folded/unfolded rudder, the pitching motion characteristics of the missile and the interference of the flow field structures for the aircraft are compared. Results show that at supersonic speed, there exists a complex shock system structure for typical embedded bomber fighter configuration, which will have a strong aerodynamic interference effect on the carrier bomb, inducing the carrier to nose up. With no initial separating angular velocity, unsafe separation is tend to occur. When reducing separation altitude, unsafe separation tendency for the bomb would advance. During the separation process, the rudder surface is not conducive to the attitude control of the loaded bomb. Meanwhile, folded rudder is unfavorable for the attitude control of the bomb during the separation procedure, thus folding the rudder as soon as possible is demanded at the premise of safe separation, in order to guarantee stability control of the bomb attitude.
  • loading
  • [1]
    吴继飞. 内埋武器舱系统气动特性研究[D]. 绵阳: 中国空气动力研究与发展中心, 2012.

    WU J F. Investigation on aerodynamic characteristics of internal weapons bay system[D]. Mianyang: China Aerodynamics Research and Development Center, 2012.
    [2]
    PENG S H. Numerical analysis of FS2020 military aircraft model with weapon bay[R]. FOI-MEMO-2489-SE, 2008.
    [3]
    杨党国. 内埋武器舱气动声学特性与噪声抑制研究[D]. 绵阳: 中国空气动力研究与发展中心, 2010.

    YANG D G. Studies on aeroacoustic characteristics and noise suppressions for internal weapon bays[D]. Mianyang: China Aerodynamics Research and Development Center, 2010.
    [4]
    BJORGE S T, REEDER M F, SUBRAMANIAN C, et al. Flow around an object projected from a cavity into a supersonic freestream[R]. AIAA 2004-1253, 2004. doi: 10.2514/6.2004-1253
    [5]
    SINHA N, ARUNAJATESAN S, SHIPMAN J, et al. High fidelity simulation and measurements of aircraft weapons bay dynamics[R]. AIAA-2001-2125. 2001. doi: 10.2514/6.2001-2125
    [6]
    STALLINGS R L Jr. Store separation from cavities at supersonic flight speeds[J]. Journal of Spacecraft and Rockets, 1983, 20(2): 129. doi: 10.2514/3.28368
    [7]
    STALLINGS R L Jr, WILCOX F J Jr. Experimental cavity pressure distributions at supersonic speeds[R]. NASA TP-2683, 1987.
    [8]
    吴继飞, 罗新福, 徐来武, 等. 内埋武器舱关键气动及声学问题研究[J]. 空气动力学学报, 2016, 34(4): 482-489. doi: 10.7638/kqdlxxb-2014.0101

    WU J F, LUO X F, XU L W, et al. Investigation on key aerodynamic and aeroacousticproblems of internal weapons bay[J]. Acta Aerodynamica Sinica, 2016, 34(4): 482-489. doi: 10.7638/kqdlxxb-2014.0101
    [9]
    常超, 丁海河. 内埋弹射武器机弹安全分离技术综述[J]. 现代防御技术, 2012, 40(5): 67-74. doi: 10.3969/j.issn.1009-086x.2012.05.013

    CHANG C, DING H H. Review on missile store safety separation technology of embedded ejection weapons[J]. Modern Defence Technology, 2012, 40(5): 67-74. doi: 10.3969/j.issn.1009-086x.2012.05.013
    [10]
    吴继飞, 罗新福, 徐来武, 等. 内埋武器分离特性及其改进方法研究[J]. 空气动力学学报, 2014, 32(6): 814-819. doi: 10.7638/kqdlxxb-2012.0178

    WU J F, LUO X F, XU L W, et al. Investigation on internal weapon separation characteristics and flow control methods[J]. Acta Aerodynamica Sinica, 2014, 32(6): 814-819. doi: 10.7638/kqdlxxb-2012.0178
    [11]
    刘琼, 桑为民, 雷熙薇. 二维空腔超声速流动特性及形状影响数值研究[J]. 航空计算技术, 2010, 40(6): 81-85. doi: 10.1117/12.896351

    LIU Q, SANG W M, LEI X W. Numerical simulation of flow characteristics and cavity configuration impact on the supersonic cavity flow[J]. Aeronautical Computing Technique, 2010, 40(6): 81-85. doi: 10.1117/12.896351
    [12]
    KHANAL B, KNOWLES K, SADDINGTON A. Computational study of cavity flowfield at transonic speeds[R]. AIAA 2009-701, 2009. doi: 10.2514/6.2009-701
    [13]
    DAVIS M, YAGLE P, SMITH B, et al. Store trajectory response to unsteady weapons bay flowfields[R]. AIAA 2009-547, 2009. doi: 10.2514/6.2009-547
    [14]
    JOHNSON R, STANEK M, GROVE J. Store separation trajectory deviations due to unsteady weapons bay aerodynamics[R]. AIAA 2008-188, 2008. doi: 10.2514/6.2008-188
    [15]
    杨俊, 李骞, 谢云恺, 等. 超声速内埋武器分离数值研究[J]. 弹箭与制导学报, 2015, 35(4): 171-174. doi: 10.15892/j.cnki.djzdxb.2015.04.042

    YANG J, LI Q, XIE Y K, et al. Numerical studies on store separation from a weapon bay at supersonic speed[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2015, 35(4): 171-174. doi: 10.15892/j.cnki.djzdxb.2015.04.042
    [16]
    崔会敏. 超音速下内埋弹舱与弹体耦合流动数值研究[D]. 北京: 北京交通大学, 2012.

    CUI H M. Numerical investigation of coupled supersonic weapon bay and missile[D]. Beijing: Beijing Jiaotong University, 2012.
    [17]
    李菁, 陈帮, 胡俊香. 三维内埋式航弹与载机分离非定常流场数值模拟[J]. 兵器装备工程学报, 2019, 40(4): 119-123. doi: 10.11809/bqzbgcxb2019.04.029

    LI J, CHEN B, HU J X. CFD numerical simulation of the interference flow fluid of three-dimensional airplane and aviation bomb[J]. Journal of Ordnance Equipment Engineering, 2019, 40(4): 119-123. doi: 10.11809/bqzbgcxb2019.04.029
    [18]
    闫盼盼, 张群峰, 金明, 等. 内埋武器发射参数对下落轨迹的影响[J]. 工程力学, 2018, 35(1): 246-256.

    YAN P P, ZHANG Q F, JIN M, et al. Effects of launching parameters on the separation trajectory of internal weapons[J]. Engineering Mechanics, 2018, 35(1): 246-256.
    [19]
    李周复. 风洞特种试验技术[M]. 北京: 航空工业出版社, 2010.
    [20]
    恽起麟. 风洞实验[M]. 北京: 国防工业出版社, 2000.

    YUN Q L. Wind tunnel testing[M]. Beijing: National Defense Industry Press, 2000.
    [21]
    薛飞, 金鑫, 王誉超, 等. 内埋武器高速投放风洞试验技术[J]. 航空学报, 2017, 38(1): 64-70. doi: 10.7527/S1000-6893.2016.0177

    XUE F, JIN X, WANG Y C, et al. Windtunnel test technique on high speed weapon delivery from internal weapons bay[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(1): 64-70. doi: 10.7527/S1000-6893.2016.0177
    [22]
    蒋增辉, 宋威, 鲁伟, 等. 高速风洞投放模型试验技术的关键问题及应用领域[J]. 空气动力学学报, 2016, 34(6): 744-749, 802. doi: 10.7638/kqdlxxb-2015.0195

    JIANG Z H, SONG W, LU W, et al. Critical problems and applied fields of drop-model testing technique in high speed wind tunnel[J]. Acta Aerodynamica Sinica, 2016, 34(6): 744-749, 802. doi: 10.7638/kqdlxxb-2015.0195
    [23]
    宋威, 鲁伟, 蒋增辉, 等. 内埋武器高速风洞弹射投放模型试验关键技术研究[J]. 力学学报, 2018, 50(6): 1346-1355. doi: 10.6052/0459-1879-18-180

    SONG W, LU W, JIANG Z H, et al. The crucial technique investigation of wind-tunnel drop-model testing for the supersonic internal weapons[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(6): 1346-1355. doi: 10.6052/0459-1879-18-180
    [24]
    董金刚, 谢峰, 张晨凯, 等. 风洞模型投放试验轻模型法重力效应影响[J]. 航空学报, 2020, 41(6): 523434. doi: 10.7527/S1000-6893.2019.23434

    DONG J G, XIE F, ZHANG C K, et al. Gravity effects of light model method in wind tunnel model drop-test[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(6): 523434. doi: 10.7527/S1000-6893.2019.23434
    [25]
    董金刚, 魏忠武, 赵星宇, 等. 基于并联机构构型的CTS试验技术研究[J]. 空气动力学学报, 2020, 38(5): 932-937. doi: 10.7638/kqdlxxb-2019.0128

    DONG J G, WEI Z W, ZHAO X Y, et al. a novel parallel mechanism-based CTS test technique for the wind tunnel[J]. Acta Aerodynamica Sinica, 2020, 38(5): 932-937. doi: 10.7638/kqdlxxb-2019.0128
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)

    Article Metrics

    Article views (531) PDF downloads(53) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return