Volume 35 Issue 2
Apr.  2021
Turn off MathJax
Article Contents
CAI Ming, GAO Limin, LIU Zhe, et al. Cascade testing for a subsonic compressor linear cascade and its modification[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(2): 36-42. doi: 10.11729/syltlx20200079
Citation: CAI Ming, GAO Limin, LIU Zhe, et al. Cascade testing for a subsonic compressor linear cascade and its modification[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(2): 36-42. doi: 10.11729/syltlx20200079

Cascade testing for a subsonic compressor linear cascade and its modification

doi: 10.11729/syltlx20200079
  • Received Date: 2020-06-28
  • Rev Recd Date: 2020-11-09
  • Publish Date: 2021-04-01
  • In order to compare the aerodynamic performance of a compressor airfoil and its modification airfoil with short chord, the linear cascade tests for the baseline and modified airfoils were conducted in a high subsonic cascade wind tunnel. Before the formal experiment, the inflow uniformity and outflow periodicity were checked under the test condition with and without the test cascade, and the measurement blade passage was determined to meet the test requirement. By cascade experiments, the outlet total pressure, outlet flow angle, and the isentropic Mach number distribution on the baseline and modified cascades were obtained and analyzed. The experimental results show that the loss of the modified cascade is larger than that of the baseline, due to the larger adverse pressure gradient after the peak isentropic Mach number position caused by the larger curvature change of the modified cascade. At the design inlet Mach number 0.6, the incidence range with low total pressure loss of the modified cascade is three degrees larger than that of the baseline cascade, and both the baseline and the modified cascades show good loss characteristics under negative incidence condition. At the design incidence angle (i=0°), the wake profile depth of the baseline and modified cascades increases with the inlet Mach number 0.4~0.7. But when the inlet Mach number reaches the critical value of 0.8, both the depth and the width of the wake profile of the baseline and the modified cascades increase.
  • loading
  • [1]
    DUNAVANT J C, EMERY J C, WALCH H C, et al. High-speed cascade tests of the NACA 65-(12A10)10 and NACA 65-(12A2I8b)10 compressor blade sections[R]. NACA RM-L55I08, 1955.
    [2]
    EMERY J C, DUNAVANT J C. Two-dimensionalcascade tests of NACA 65-(CloA10)10 blade sections at typical compressor hub conditions for speeds up to choking[R]. NACA RM-L57H05, 1957.
    [3]
    LEGGETT J, PRIEBE S, SANDBERG R, et al. Detailed investigation of RANS and LES predictions of loss generation in an axial compressor cascade at off design incidences[C]//Proceedings of ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition. 2016. doi: 10.1115/GT2016-57972
    [4]
    LI R Y, GAO L M, MA C, et al. Cornerseparation dynamics in a high-speed compressor cascade based on detached-eddy simulation[J]. Aerospace Science and Technology, 2020, 99: 105730. doi: 10.1016/j.ast.2020.105730
    [5]
    LI J B, JI L C, YI W L. Experimental and numerical investigation on the aerodynamic performance of a compressor cascade using blended blade and end wall[C]//Proceedings of ASME Turbo Expo 2017: Turbomachinery Technical Confe-rence and Exposition. 2017. doi: 10.1115/GT2017-63879
    [6]
    MAO X, LIU B, YUAN F, et al. Numerical and experimental study of separation control by boundary layer aspiration in a highly-loaded axial compressor cascade[J]. Journal of Applied Fluid Mechanics, 2018, 11(2): 433-446. doi: 10.29252/jafm.11.02.27840
    [7]
    YU X J, LIU B J. Research on three-dimensional blade designs in an ultra-highly loaded low-speed axial compressor stage: Design and numerical investigations[J]. Advances in Mechanical Engineering, 2016, 8(10): 1-16. doi: 10.1177/1687814016674629
    [8]
    HERGT A, MEYER R, ENGEL K. Effects of vortex generator application on the performance of a compressor cascade[J]. Journal of Turbomachinery, 2013, 135(2): 021026. doi: 10.1115/1.4006605
    [9]
    KIESNER M, KING R. Multivariable closed-loop active flow control of a compressor stator cascade[J]. AIAA Journal, 2017, 55(10): 3371-3380. doi: 10.2514/1.J055728
    [10]
    马昌友, 侯敏杰, 凌代军, 等. 平面扩压叶栅流场PIV与三孔尾迹探针对比测试研究[J]. 实验流体力学, 2014, 28(2): 45-50, 58. http://www.syltlx.com/CN/abstract/abstract10717.shtml

    MA C Y, HOU M J, LING D J, et al. Comparative study between PIV and three-hole wake probe measurements in the compressor plane cascade flow field[J]. Journal of Experiments in Fluid Mechanics, 2014, 28(2): 45-50, 58. http://www.syltlx.com/CN/abstract/abstract10717.shtml
    [11]
    高丽敏, 高杰, 王欢, 等. PSP技术在叶栅叶片表面压力测量中的应用[J]. 工程热物理学报, 2011, 32(3): 411-414. https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB201103015.htm

    GAO L M, GAO J, WANG H, et al. Application of PSP technique to pressure measurement on cascade surface[J]. Journal of Engineering Thermophysics, 2011, 32(3): 411-414. https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB201103015.htm
    [12]
    李仁康, 王如根, 何成, 等. 涡流发生器对高负荷压气机叶栅角区分离影响的实验研究[J]. 实验流体力学, 2017, 31(6): 22-28, 36. http://www.syltlx.com/CN/abstract/abstract11062.shtml

    LI R K, WANG R G, HE C, et al. Experimental investigation on the effects of vortex generator on corner separation in a high-load compressor cascade[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(6): 22-28, 36. http://www.syltlx.com/CN/abstract/abstract11062.shtml
    [13]
    魏巍, 刘波, 杜炜, 等. 可控扩散叶型与双圆弧叶型实验对比研究[J]. 推进技术, 2017, 38(1): 61-68. doi: 10.13675/j.cnki.tjjs.2017.01.009

    WEI W, LIU B, DU W, et al. Experimental comparison of controlled diffusion airfoils with double circle airfoils[J]. Journal of Propulsion Technology, 2017, 38(1): 61-68. doi: 10.13675/j.cnki.tjjs.2017.01.009
    [14]
    高丽敏, 蔡宇桐, 曾瑞慧, 等. 叶片加工误差对压气机叶栅气动性能的影响[J]. 推进技术, 2017, 38(3): 525-531. doi: 10.13675/j.cnki.tjjs.2017.03.007

    GAO L M, CAI Y T, ZENG R H, et al. Effects of blade machining error on compressor cascade aerodynamic performance[J]. Journal of Propulsion Technology, 2017, 38(3): 525-531. doi: 10.13675/j.cnki.tjjs.2017.03.007
    [15]
    高丽敏, 蔡明. 压气机叶型的风洞试验研究[J]. 风机技术, 2018, 60(4): 9-15. doi: 10.16492/j.fjjs.2018.04.0002

    GAO L M, CAI M. Experimental investigations of compressor airfoil on cascade wind tunnel[J]. Chinese Journal of Turbomachinery, 2018, 60(4): 9-15. doi: 10.16492/j.fjjs.2018.04.0002
    [16]
    刘宝杰, 袁春香, 于贤君. 前缘形状对可控扩散叶型性能影响[J]. 推进技术, 2013, 34(7): 890-897. doi: 10.13675/j.cnki.tjjs.2013.07.006

    LIU B J, YUAN C X, YU X J. Effects of leading-edge geometry on aerodynamic performance in controlled diffusion airfoil[J]. Journal of Propulsion Technology, 2013, 34(7): 890-897. doi: 10.13675/j.cnki.tjjs.2013.07.006
    [17]
    向宏辉, 葛宁, 侯敏杰, 等. 高来流马赫数单列叶栅改串列叶栅性能对比试验[J]. 航空动力学报, 2016, 31(11): 2757-2764. doi: 10.13224/j.cnki.jasp.2016.11.026

    XIANG H H, GE N, HOU M J, et al. Performance contrast experiment of prototype single cascade and redesign tandem cascade at high inlet Mach number[J]. Journal of Aerospace Power, 2016, 31(11): 2757-2764. doi: 10.13224/j.cnki.jasp.2016.11.026
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(1)

    Article Metrics

    Article views (303) PDF downloads(18) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return