Volume 35 Issue 3
Jun.  2021
Turn off MathJax
Article Contents
LI Zhao, YANG Guangjun, JIANG Feng. Experimental analysis on aero-loading of wing skin with icing accretion[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(3): 9-15. doi: 10.11729/syltlx20200074
Citation: LI Zhao, YANG Guangjun, JIANG Feng. Experimental analysis on aero-loading of wing skin with icing accretion[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(3): 9-15. doi: 10.11729/syltlx20200074

Experimental analysis on aero-loading of wing skin with icing accretion

doi: 10.11729/syltlx20200074
  • Received Date: 2020-06-12
  • Rev Recd Date: 2020-08-21
  • Publish Date: 2021-06-25
  • Ice accretion changes the aerodynamic shape and flow field of the airfoil, which makes the aerodynamic load distribution of the wing change dynamically. The skin, as the object of bearing and transferring aero-loading, produces different vibration responses under its dynamic action. Taking a large camber and thick airfoil as an object, the vibration characteristics of the upper and lower skins of the trailing edge under the typical icing condition are extracted, the load spectrum is used to study the skin vibration and flow field changes, and the structural stability of different skin is investigated. The results show that: Different skins have different load sensing performance for the ice-induced detached vortices and trailing edge separated vortices; the load spectrum and energy are relatively concentrated for the rigid skin while scattered for the flexible skin; as the ice accretes, the dominant frequency of detached vortices decreases slightly, substrate ice causes wide-width and high-frequency vibration, and the mixing of detached vortices and the wake results in the increase of the loading energy around the trailing edge.
  • loading
  • [1]
    CAO Y H, TAN W Y, WU Z L. Aircraft icing: an ongoing threat to aviation safety[J]. Aerospace Science and Technology, 2018, 75: 353-385. doi: 10.1016/j.ast.2017.12.028
    [2]
    白俊强, 李鑫, 华俊, 等. 过冷大水滴情况下的积冰数值模拟[J]. 空气动力学学报, 2013, 31(6): 801-811. https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201306020.htm

    BAI J Q, LI X, HUA J, et al. Ice accretion simulation in supercooled large droplets regime[J]. Acta Aerodynamica Sinica, 2013, 31(6): 801-811. https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201306020.htm
    [3]
    刘胜先, 李录平, 余涛, 等. 基于振动检测的风力机叶片覆冰状态诊断技术[J]. 中国电机工程学报, 2013, 33(32): 88-95. doi: 10.13334/j.0258-8013.pcsee.2013.32.009

    LIU S X, LI L P, YU T, et al. Diagnosis technology for the icing status of wind turbine blades based on vibration detection[J]. Proceedings of the CSEE, 2013, 33(32): 88-95. doi: 10.13334/j.0258-8013.pcsee.2013.32.009
    [4]
    卢方. 风机叶片覆冰监测与防冰除冰试验研究[D]. 长沙: 湖南大学, 2014.

    LU F. Experimental study on icing monitoring and anti-icing or deicing of the wind turbine blade[D]. Changsha: Hunan University, 2014.
    [5]
    张岩松. 冰与蒙皮结合状态检测原理与试验研究[D]. 武汉: 华中科技大学, 2016.

    ZHANG Y S. Principle and experimental research of airborne ice adhesion detector[D]. Wuhan: Huazhong University of Science and Technology, 2016.
    [6]
    李冬, 张辰, 王福新, 等. 结冰对带舵面翼型流场的影响及其气动参数分析[J]. 上海交通大学学报, 2017, 51(3): 367-373. doi: 10.16183/j.cnki.jsjtu.2017.03.019

    LI D, ZHANG C, WANG F X, et al. Effect of icing on airfoil with control surface and analysis of aerodynamic parameters[J]. Journal of Shanghai Jiao Tong University, 2017, 51(3): 367-373. doi: 10.16183/j.cnki.jsjtu.2017.03.019
    [7]
    张义浦, 张志春, 赵秀影. 基于FLUENT的飞机机翼积冰的数值模拟[J]. 科学技术与工程, 2017, 17(20): 302-307. doi: 10.3969/j.issn.1671-1815.2017.20.052

    ZHANG Y P, ZHANG Z C, ZHAO X Y. Numerical simulation of aircraft wing icing based on FLUENT[J]. Science Technology and Engineering, 2017, 17(20): 302-307. doi: 10.3969/j.issn.1671-1815.2017.20.052
    [8]
    李仁年, 张士昂, 杨瑞, 等. 风力机的翼型弯度对风力机翼型气动性能的影响[J]. 流体机械, 2009, 37(5): 17-21. doi: 10.3969/j.issn.1005-0329.2009.05.005

    LI R N, ZHANG S A, YANG R, et al. Effect ofaerofoil camber on airfoil aerodynamic performance[J]. Fluid Machinery, 2009, 37(5): 17-21. doi: 10.3969/j.issn.1005-0329.2009.05.005
    [9]
    刘强, 刘周, 白鹏, 等. 低雷诺数翼型蒙皮主动振动气动特性及流场结构数值研究[J]. 力学学报, 2016, 48(2): 269-277. doi: 10.6052/0459-1879-15-188

    LIU Q, LIU Z, BAI P, et al. Numerical study about aerody-namic characteristics and flow field structures for a skin of airfoil with active oscillation at low Reynolds number[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(2): 269-277. doi: 10.6052/0459-1879-15-188
    [10]
    李建华, 李锋, 李茂强, 等. 中空长航时无人机两段翼型设计研究[J]. 空气动力学学报, 2019, 37(5): 813-818. doi: 10.7638/kqdlxxb-2017.0130

    LI J H, LI F, LI M Q, et al. Investigation of design methodology for two-element airfoil of medium altitude and long endurance UAV[J]. Acta Aerodynamica Sinica, 2019, 37(5): 813-818. doi: 10.7638/kqdlxxb-2017.0130
    [11]
    SAEED F, SELIG M S, BRAGG M B. Design of subscale airfoils with full-scale leading edges for ice accretion testing[J]. Journal of Aircraft, 1997, 34(1): 94-100. doi: 10.2514/2.2140
    [12]
    FUJIWARA G E C, BRAGG M B. Method for designing hybrid airfoils for icing wind-tunnel tests[J]. Journal of Aircraft, 2018, 56(1): 137-149. doi: 10.2514/1.C034987
    [13]
    屈晓力, 任泽斌, 张海洋, 等. 某型直升机防砂滤结冰风洞试验研究[J]. 直升机技术, 2019(2): 50-54, 59. doi: 10.3969/j.issn.1673-1220.2019.02.011

    QU X L, REN Z B, ZHANG H Y, et al. Experimental research of sand filter specimen for the helicopter in an icing wind tunnel[J]. Helicopter Technique, 2019(2): 50-54, 59. doi: 10.3969/j.issn.1673-1220.2019.02.011
    [14]
    郑国梁. 基于固有频率的碳纤维布加固钢筋砼梁损伤研究[D]. 镇江: 江苏大学, 2007.

    ZHENG G L. The research on damage behaviour of CFRP strengthed RC beam based on fundamental frequency[D]. Zhenjiang: Jiangsu University, 2007.
    [15]
    王海民, 刘欢, 孔祥帅. 三偏心蝶板绕流尾部涡脱落的研究[J]. 流体机械, 2019, 47(2): 23-28, 74. doi: 10.3969/j.issn.1005-0329.2019.02.005

    WANG H M, LIU H, KONG X S. Vortex shedding of the tail in the flow passing through a tri-eccentric butterfly disc[J]. Fluid Machinery, 2019, 47(2): 23-28, 74. doi: 10.3969/j.issn.1005-0329.2019.02.005
    [16]
    ZHANG Y, HABASHI W G, KHURRAM R A. Zonal detached-eddy simulation of turbulent unsteady flow over iced airfoils[J]. Journal of Aircraft, 2015, 53(1): 168-181. doi: 10.2514/1.C033253
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(2)

    Article Metrics

    Article views (425) PDF downloads(26) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return