Volume 35 Issue 4
Aug.  2021
Turn off MathJax
Article Contents
DU X F,SHI A H,MA Z X,et al. Measurement and analysis of motion characteristics of vapor clouds induced by aluminum-aluminum hypervelocity impact[J]. Journal of Experiments in Fluid Mechanics, 2021,35(4):83-91. doi: 10.11729/syltlx20200071
Citation: DU X F,SHI A H,MA Z X,et al. Measurement and analysis of motion characteristics of vapor clouds induced by aluminum-aluminum hypervelocity impact[J]. Journal of Experiments in Fluid Mechanics, 2021,35(4):83-91. doi: 10.11729/syltlx20200071

Measurement and analysis of motion characteristics of vapor clouds induced by aluminum-aluminum hypervelocity impact

doi: 10.11729/syltlx20200071
  • Received Date: 2020-06-02
  • Rev Recd Date: 2020-07-24
  • Available Online: 2021-08-26
  • Publish Date: 2021-08-25
  • A sequenced imaging method for obtaining the velocity of the impact-induced vapor shock wave is designed according to the generating mechanisms and radiation characteristics of vapor clouds in hypervelocity impacts. Tests were conducted for 2A12 aluminum plates being impacted by aluminum spheres with a diameter of 4.5 mm and velocity of 6 km/s. Sequenced images of the movement of the impact-induced vapor shock wave were obtained. The expanding radius, the velocity of the vapor shock wave, the total energy of the vapor clouds and the distribution of parameters in the flow field behind the shock wave, etc., were quantitatively analyzed. It is revealed from the results that the location information of the impact vapor shock wave at different times can be obtained properly by the designed measurement method, providing data for analyzing the motion characteristics of the vapor cloud. The measured expansion of the vapor wave radius with time is consistent with fitting results of the Taylor model, proving that the Taylor model theory can be used for studies related to hypervelocity impact vaporization.
  • loading
  • [1]
    SUGITA S,SCHULTZ P H. Interactions between impact-induced vapor clouds and the ambient atmosphere: 1. Spectroscopic observations using diatomic molecular emission[J]. Journal of Geophysical Research,2003,108(E6):5051. doi: 10.1029/2002JE001959
    [2]
    SUGITA S,SCHULTZ P H. Interactions between impact-induced vapor clouds and the ambient atmosphere: 2. Theoretical modeling[J]. Journal of Geophysical Research,2003,108(E6):5052. doi: 10.1029/2002JE001960
    [3]
    TAYLOR G. The formation of a blast wave by a very intense explosion. Ⅰ. Theoretical discussion[J]. Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences,1950,201(1065):159-174. doi: 10.1098/rspa.1950.0049
    [4]
    TAYLOR G. The formation of a blast wave by a very intense explosion. Ⅱ. The atomic explosion of 1945[J]. Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences,1950,201(1065):175-186. doi: 10.1098/rspa.1950.0050
    [5]
    SCHULTZ P H. Effect of impact angle on vaporization[J]. Journal of Geophysical Research: Planets,1996,101(E9):21117-21136. doi: 10.1029/96JE02266
    [6]
    SUGITA S,SCHULTZ P H,ADAMS M A. Spectroscopic measurements of vapor clouds due to oblique impacts[J]. Journal of Geophysical Research: Planets,1998,103(E8):19427-19441. doi: 10.1029/98JE02026
    [7]
    SUGITA S,SCHULTZ P H. Spectroscopic characterization of hypervelocity jetting: Comparison with a standard theory[J]. Journal of Geophysical Research: Planets,1999,104(E12):30825-30845. doi: 10.1029/1999JE001061
    [8]
    SCHULTZ P H,SUGITA S,EBERHARDY C A,et al. The role of ricochet impacts on impact vaporization[J]. International Journal of Impact Engineering,2006,33(1-12):771-780. doi: 10.1016/j.ijimpeng.2006.09.005
    [9]
    SCHULTZ P H,EBERHARDY C A. Spectral probing of impact-generated vapor in laboratory experiments[J]. Icarus,2015,248:448-462. doi: 10.1016/j.icarus.2014.10.041
    [10]
    MIHALY J M,TANDY J D,ADAMS M A,et al. In situ diagnostics for a small-bore hypervelocity impact facility[J]. International Journal of Impact Engineering,2013,62:13-26. doi: 10.1016/j.ijimpeng.2013.05.004
    [11]
    MIHALY J M,ROSAKIS A J,ADAMS M A,et al. Imaging ejecta and debris cloud behavior using laser side-lighting[J]. Procedia Engineering,2013,58:363-368. doi: 10.1016/j.proeng.2013.05.041
    [12]
    TANDY J D,MIHALY J M,ADAMS M A,et al. Examining the temporal evolution of hypervelocity impact phenomena via high-speed imaging and ultraviolet-visible emission spectroscopy[J]. Journal of Applied Physics,2014,116(3):034901. doi: 10.1063/1.4890230
    [13]
    MIHALY J M,TANDY J D,ROSAKIS A J,et al. Pressure-dependent, infrared-emitting phenomenon in hypervelocity impact[J]. Journal of Applied Mechanics,2015,82(1):011004. doi: 10.1115/1.4028856
    [14]
    石安华,柳森,黄洁,等. 铝弹丸超高速撞击铝靶光谱辐射特性实验研究[J]. 宇航学报,2008,29(2):715-717. doi: 10.3873/j.issn.1000-1328.2008.02.061

    SHI A H,LIU S,HUANG J,et al. Spectra measurement of radiation produced by aluminum projectiles impacting aluminum targets at hypervelocity speeds[J]. Journal of Astronautics,2008,29(2):715-717. doi: 10.3873/j.issn.1000-1328.2008.02.061
    [15]
    马兆侠,黄洁,石安华,等. 铝球超高速撞击铝板反溅碎片云团辐射特性研究[J]. 实验流体力学,2014,28(2):90-94. doi: 10.11729/syltlx2014pz27

    MA Z X,HUANG J,SHI A H,et al. Study on radiation characteristics of ricochet debris cloud from aluminum plate subjected to hypervelocity impacts by aluminum projectile[J]. Journal of Experiments in Fluid Mechanics,2014,28(2):90-94. doi: 10.11729/syltlx2014pz27
    [16]
    马兆侠, 石安华, 黄洁, 等. 超高速撞击闪光的物理建模及数值计算方法[C]//中国力学大会-2017暨庆祝中国力学学会成立60周年大会论文集. 2017: 703-709.
    [17]
    MA Z X,SHI A H,LI J L,et al. Radiation mechanism analysis of hypervelocity impact Ejecta cloud[J]. International Journal of Impact Engineering,2020,141:103560. doi: 10.1016/j.ijimpeng.2020.103560
    [18]
    邹彪,陈建平,沈中华,等. 激光等离子体的声学诊断研究[J]. 光学学报,1998,18(2):212-216. doi: 10.3321/j.issn:0253-2239.1998.02.016

    ZOU B,CHEN J P,SHEN Z H,et al. Mechanism of laser induced plasma acoustic wave[J]. Acta Optica Sinica,1998,18(2):212-216. doi: 10.3321/j.issn:0253-2239.1998.02.016
    [19]
    卞保民,杨玲,陈笑,等. 激光等离子体及点爆炸空气冲击波波前运动方程的研究[J]. 物理学报,2002,51(4):809-813. doi: 10.3321/j.issn:1000-3290.2002.04.019

    BIAN B M,YANG L,CHEN X,et al. Study of the laser-induced plasmas and the kinematics of shock waves in air by a way intense explosion[J]. Acta Physica Sinica,2002,51(4):809-813. doi: 10.3321/j.issn:1000-3290.2002.04.019
    [20]
    唐恩凌,李振波,韩雅菲,等. 超高速碰撞2A12铝板产生闪光辐射的空间演化规律[J]. 发光学报,2017,38(7):944-952. doi: 10.3788/fgxb20173807.0944

    TANG E L,LI Z B,HAN Y F,et al. Spatial evolutionary rules of light flash radiation generated by hypervelocity impact on 2A12 aluminum plate[J]. Chinese Journal of Luminescence,2017,38(7):944-952. doi: 10.3788/fgxb20173807.0944
    [21]
    李维新. 一维不定常流与冲击波[M]. 北京: 国防工业出版社, 2003: 330-340.

    LI W X. One-dimensional nonsteady flow and shock waves[M]. Beijing: National Defense Industry Press, 2003: 330-340.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(4)

    Article Metrics

    Article views (655) PDF downloads(39) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return