Volume 35 Issue 5
Nov.  2021
Turn off MathJax
Article Contents
ZHOU H,LI Y,ZHANG H,et al. Evolution prediction of HVI debris based on CVAE model[J]. Journal of Experiments in Fluid Mechanics, 2021,35(5):40-46. doi: 10.11729/syltlx20200058
Citation: ZHOU H,LI Y,ZHANG H,et al. Evolution prediction of HVI debris based on CVAE model[J]. Journal of Experiments in Fluid Mechanics, 2021,35(5):40-46. doi: 10.11729/syltlx20200058

Evolution prediction of HVI debris based on CVAE model

doi: 10.11729/syltlx20200058
  • Received Date: 2020-04-17
  • Rev Recd Date: 2020-09-13
  • Available Online: 2021-11-15
  • Publish Date: 2021-11-05
  • Efficiently and accurately predicting the evolution of hypervelocity impact debris is crucial in the design of spacecraft protective structures. To this end a deep learning model is constructed. The model is based on the conditional variation auto encoder (CVAE) and massive smoothed particle hydrodynamics (SPH) simulations. The model includes four controllable labels, namely projectile velocity (3.00-8.00 km/s) radius (2.00-8.00 mm), target plate thickness (1.000-4.000 mm), and time instant (1.0-12.0 μs). The model uses 200 parameters to describe the debris mass distribution, resulting in an average error less than 0.6%. It takes less than 7 micro seconds to predict one debris mass distribution.
  • loading
  • [1]
    CHRISTIANSEN E L. Meteoroid/debris shielding[R]. TP-2003-210788, 2003.
    [2]
    WHIPPLE F L. Meteorites and space travel[J]. The Astronomical Journal,1947,52(5):131-137. doi: 10.1086/106009
    [3]
    SWIFT H F,BAMFORD R,CHEN R. Designing space vehicle shields for meteoroid protection: a new analysis[J]. Advances in Space Research,1982,2(12):219-234. doi: 10.1016/0273-1177(82)90311-8
    [4]
    SCHÄFER F K. An engineering fragmentation model for the impact of spherical projectiles on thin metallic plates[J]. International Jour-nal of Impact Engineering,2006,33(1):745-762. doi: 10.1016/j.ijimpeng.2006.09.067
    [5]
    CORVONATO E,DESTEFANIS R,FARAUD M. Integral model for the description of the debris cloud structure and impact[J]. Inter-national Journal of Impact Engineering,2001,26(1):115-128. doi: 10.1016/S0734-743X(01)00074-4
    [6]
    HUANG J,MA Z X,REN L S,et al. A new engineering model of debris cloud produced by hypervelocity impact[J]. International Jour-nal of Impact Engineering,2013,56:32-39. doi: 10.1016/j.ijimpeng.2012.07.003
    [7]
    MA Z X, HUANG J, LIANG S C. The technology of modeling debris cloud produced by hypervelocity impact[C]//Proc of the 6th European Conference on Space Debris. 2013.
    [8]
    RYAN S,THALER S,KANDANAARACHCHI S. Machine learning methods for predicting the outcome of hypervelocity impact events[J]. Expert Systems With Applications,2016,45:23-39. doi: 10.1016/j.eswa.2015.09.038
    [9]
    HOSSEINI M,ABBAS H. Neural network approach for estimation of hole-diameter in thin plates perforated by spherical projectiles[J]. Thin-Walled Structures,2008,46(6):592-601. doi: 10.1016/j.tws.2008.01.012
    [10]
    刘源,庞宝君. 基于贝叶斯正则化BP神经网络的铝平板超高速撞击损伤模式识别[J]. 振动与冲击,2016,35(12):22-27.

    LIU Y,PANG B J. Hypervelocity impact damage pattern recognition on aluminum plates based on Bayesian Regularization BP neural network[J]. Journal of Vibration and Shock,2016,35(12):22-27.
    [11]
    KINGMA D P, WELLING M. Auto-encoding variational Bayes[EB/OL]. [2013-12-20]. https://arxiv.org/abs/1312.6114.
    [12]
    KIHYUK S. Learning structured output representation using deep conditional generative models[C]//Proc of the International Conferen-ce on Neural Information Processing Systems. 2015.
    [13]
    T HENRY DE FRAHAN M,YELLAPANTULA S,KING R,et al. Deep learning for presumed probability density function models[J]. Combustion and Flame,2019,208:436-450. doi: 10.1016/j.combustflame.2019.07.015
    [14]
    EISMANN S, BARTZSCH S, ERMON S. Shape optimization in la-minar flow with a label-guided variational autoencoder[EB/OL]. [2017-12-10]. https://arxiv.org/abs/1712.03599.
    [15]
    BHOWMIK D,GAO S,YOUNG M T,et al. Deep clustering of protein folding simulations[J]. BMC Bioinformatics,2018,19(18):47-58. doi: 10.1186/s12859-018-2507-5
    [16]
    CHEN H M,ENGKVIST O,WANG Y H,et al. The rise of deep learning in drug discovery[J]. Drug Discovery Today,2018,23(6):1241-1250. doi: 10.1016/j.drudis.2018.01.039
    [17]
    文永,张浩,李毅,等. 基于深度学习的超高速碰撞碎片云生成模型[J]. 固体力学学报,2020,41(5):455-469. doi: 10.19636/j.cnki.cjsm42-1250/o3.2020.029

    Wen Y,Zhang H,Li Y,et al. Deep learning based HIV debris generate model[J]. Acta Mechanica Solida Sinica,2020,41(5):455-469. doi: 10.19636/j.cnki.cjsm42-1250/o3.2020.029
    [18]
    李毅, 柳森, 陈鸿, 等. 并行SPH仿真软件PTS的开发与应用[C]//第二届全国超高速碰撞学术会议论文集. 2016.

    Li Y, Liu S, Chen H, et al. Develop and application of the parallel SPH software PTS[C]//Proc of the Second National Symposium on HVI. 2016.
    [19]
    MULLIN S A,LITTLEFIELD D L,ANDERSON C E Jr,et al. An examination of velocity scaling[J]. International Journal of Impact Engineering,1995,17(4):571-581. doi: 10.1016/0734-743x(95)99881-q
    [20]
    柯发伟,黄洁,李鑫,等. 超高速撞击铝板碎片云测量[J]. 空间碎片研究,2019,19(2):18-24.

    KE F W,HUANG J,LI X,et al. Measurement on debris cloud produced by impacting Al plate with hypervelocity[J]. Space Debris Research,2019,19(2):18-24.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)

    Article Metrics

    Article views (684) PDF downloads(35) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return