Volume 34 Issue 4
Aug.  2020
Turn off MathJax
Article Contents
ZHANG Haixiang, HE Feng, ZHANG Xiwen, et al. Experimental investigation on the dynamic behaviors of droplets impacting on ultrasonically vibrating curve surfaces[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(4): 1-8. doi: 10.11729/syltlx20200036
Citation: ZHANG Haixiang, HE Feng, ZHANG Xiwen, et al. Experimental investigation on the dynamic behaviors of droplets impacting on ultrasonically vibrating curve surfaces[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(4): 1-8. doi: 10.11729/syltlx20200036

Experimental investigation on the dynamic behaviors of droplets impacting on ultrasonically vibrating curve surfaces

doi: 10.11729/syltlx20200036
  • Received Date: 2020-03-16
  • Rev Recd Date: 2020-04-22
  • Publish Date: 2020-08-25
  • The present work experimentally investigates the dynamic behaviors of droplets impacting on ultrasonically vibrating curve surfaces. The complicated experimental phenomena, including edge splash, surface splash, capillary wave, cavitation, and sub-droplet rebound, are observed, and the mechanisms behind each phenomenon are revealed. The critical curve of the edge splash is obtained, and the critical vibration amplitudes on curve surfaces are lower than that on flat surfaces due to the aerodynamic force. Using the image processing technique, the expelling efficiency of the ultrasonic vibrating curve surface and the size distribution of secondary droplets are elucidated and discussed. The expelling efficiency increases linearly with the increase of the ultrasonic vibration amplitude, and the impact velocity has almost no influence on the expelling efficiency. A higher excitation amplitude results in a wider secondary droplet size distribution and a larger average size. It is found that the temperature slightly affects the dynamic collision process of the droplets through comparing the experimental results under room temperature and supercooled conditions. Under the supercooled condition, the ultrasonic vibration could still effectively expel the impinging droplets, which shows the potential of the ultrasonic vibration on the waterproof and anti-icing fields.
  • loading
  • [1]
    GAETE-GARRETÓN L, BRICEÑO-GUTIÉRREZ D, VARGAS-HERNÁNDEZ Y, et al. Ultrasonic atomization of distilled water[J]. The Journal of the Acoustical Society of America, 2018, 144(1):222-227. doi: 10.1121/1.5045558
    [2]
    GHOLAMPOUR N, BRIAN D, ESLAMIAN M. Tailoring characteristics of PEDOT:PSS coated on glass and plastics by ultrasonic substrate vibration posttreatment[J]. The Coatings, 2018, 8(10):337. doi: 10.3390/coatings8100337
    [3]
    O'SULLIVAN J J, NORWOOD E, O'MAHONY J A, et al. Atomisation technologies used in spray drying in the dairy industry:A review[J]. Journal of Food Engineering, 2019, 243:57-69. doi: 10.1016/j.jfoodeng.2018.08.027
    [4]
    DEEPU P, PENG C, MOGHADDAM S. Dynamics of ultrasonic atomization ofdroplets[J]. Experimental Thermal and Fluid Science, 2018, 92:243-247. doi: 10.1016/j.expthermflusci.2017.11.021
    [5]
    DEEPU P, BASU S, KUMAR R. Dynamics and fracture of ligaments from a droplet on a vibratingsurface[J]. Physics of Fluids, 2013, 25(8):082106. doi: 10.1063/1.4817542
    [6]
    DOUADY S. Experimental study of the Faraday instability[J]. Journal of Fluid Mechanics, 1990, 221:383-409. doi: 10.1017/S0022112090003603
    [7]
    ADOU A E, TUCKERMAN L S. Faraday instability on a sphere:Floquet analysis[J]. Journal of Fluid Mechanics, 2016, 805:591-610. doi: 10.1017/jfm.2016.542
    [8]
    LANG R J. Ultrasonic atomization of liquids[J]. The Journal of the Acoustical Society of America, 1962, 34(1):6-8. doi: 10.1121/1.1909020
    [9]
    PESKIN R L, RACO R J. Ultrasonic atomization of liquids[J]. The Journal of the Acoustical Society of America, 1963, 35(9):1378-1381. doi: 10.1121/1.1918700
    [10]
    LI Y K, UMEMURA A. Threshold condition for spray formation by Faradayinstability[J]. Journal of Fluid Mechanics, 2014, 759:73-103. doi: 10.1017/jfm.2014.569
    [11]
    LI Y K, UMEMURA A. Two-dimensional numerical investigation on the dynamics of ligament formation by Faradayinstability[J]. International Journal of Multiphase Flow, 2014, 60:64-75. doi: 10.1016/j.ijmultiphaseflow.2013.12.002
    [12]
    JAMES A J, VUKASINOVIC B, SMITH M K, et al. Vibration-induced drop atomization and bursting[J]. Journal of Fluid Mechanics, 2003, 476:1-28. doi: 10.1017/S0022112002002835
    [13]
    JAMES A J, SMITH M K, GLEZER A R I. Vibration-induced drop atomization and the numerical simulation of low-frequency single-droplet ejection[J]. Journal of Fluid Mechanics, 2003, 476:29-62. doi: 10.1017/S0022112002002860
    [14]
    DEEPU P, BASU S, SAHA A, et al. Spreading and atomization of droplets on a vibrating surface in a standing pressure field[J]. Applied Physics Letters, 2012, 101(14):143108. doi: 10.1063/1.4757567
    [15]
    LIU F S, KANG N, LI Y K, et al. Experimental investigation on the spray characteristics of a droplet under sinusoidal inertial force[J]. Fuel, 2018, 226:156-162. doi: 10.1016/j.fuel.2018.04.008
    [16]
    LIU F S, KANG N, LI Y K, et al. Experimental investigation on the atomization of a spherical droplet induced by Faraday instability[J]. Experimental Thermal and Fluid Science, 2019, 100:311-318. doi: 10.1016/j.expthermflusci.2018.09.016
    [17]
    WANG Z J. Recent progress on ultrasonic de-icing technique used for wind power generation, high-voltage transmission line andaircraft[J]. Energy and Buildings, 2017, 140:42-49. doi: 10.1016/j.enbuild.2017.01.072
    [18]
    ZENG J, SONG B L. Research on experiment and numerical simulation of ultrasonic de-icing for wind turbineblades[J]. Renewable Energy, 2017, 113:706-712. doi: 10.1016/j.renene.2017.06.045
    [19]
    GAO P H, CHENG B, ZHOU X Y, et al. Study on droplet freezing characteristic by ultrasonic[J]. Heat and Mass Transfer, 2017, 53(5):1725-1734. doi: 10.1007/s00231-016-1934-y
    [20]
    李栋, 陈振乾.超声波瞬间脱除冷表面冻结液滴的试验研究[J].化工学报, 2013, 64(8):2730-2735. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hgxb201308004

    LI D, CHEN Z Q. Instantaneous removal of frozen water droplets from cold surface by means of ultrasonicvibration[J]. Journal of Chemical Industry and Engineering (China), 2013, 64(8):2730-2735. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hgxb201308004
    [21]
    LI D, CHEN Z Q. Experimental study on instantaneously shedding frozen water droplets from cold vertical surface by ultrasonicvibration[J]. Experimental Thermal and Fluid Science, 2014, 53:17-25. doi: 10.1016/j.expthermflusci.2013.10.005
    [22]
    颜健, 李录平, 雷利斌, 等.风力机桨叶超声波除冰实验技术研究及其应用[J].可再生能源, 2015, 33(1):68-74. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ncny201501013

    YAN J, LI L P, LEI L B, et al. Experimental research on ultrasonic de-icing for wind turbine blades and its application[J]. Renewable Energy, 2015, 33(1):68-74. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ncny201501013
    [23]
    PALACIOS J, SMITH E C, ROSE J L, et al. Ultrasonic de-icing of wind-tunnel impact icing[J]. Journal of Aircraft, 2011, 48(3):1020-1027. doi: 10.2514/1.C031201
    [24]
    PALACIOS J, SMITH E C, ROSE J L, et al. Instantaneous de-icing of freezer ice via ultrasonic actuation[J]. AIAA Journal, 2011, 49(6):1158-1167. doi: 10.2514/1.J050143
    [25]
    ZHANG H X, ZHANG X W, YI X, et al. Dynamic behaviors of droplets impacting on ultrasonically vibrating surfaces[J]. Experimental Thermal and Fluid Science, 2020, 112, 110019. doi: 10.1016/j.expthermflusci.2019.110019
    [26]
    韩龙伸.超声波除冰方法与试验研究[D].杭州: 杭州电子科技大学, 2013.

    HAN L S. Research on ultrasonic deicing method and itsexperiment[D]. Hangzhou: Hangzhou Dianzi University, 2013.
    [27]
    KOOIJ S, ASTEFANEI A, CORTHALS G L, et al. Size distributions of droplets produced by ultrasonic nebulizers[J]. Scientific Reports, 2019, 9(1):6128. doi: 10.1038/s41598-019-42599-8
    [28]
    CHARALAMPOUS G, HARDALUPAS Y. Collisions of droplets on sphericalparticles[J]. Physics of Fluids, 2017, 29(10):103305. doi: 10.1063/1.5005124
    [29]
    ZHANG R, HAO P F, ZHANG X W, et al. Supercooled water droplet impact on superhydrophobic surfaces with various roughness and temperature[J]. International Journal of Heat and Mass Transfer, 2018, 122:395-402. doi: 10.1016/j.ijheatmasstransfer.2018.01.076
    [30]
    WANG Y, BOUROUIBA L. Unsteady sheet fragmentation:droplet sizes andspeeds[J]. Journal of Fluid Mechanics, 2018, 848:946-967. doi: 10.1017/jfm.2018.359
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)

    Article Metrics

    Article views (202) PDF downloads(17) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return