Volume 35 Issue 3
Jun.  2021
Turn off MathJax
Article Contents
CHEN Zhengyun, ZHANG Qingfu, PAN Chong, et al. An experimental study on drag reduction of superhydrophobic rotating disk with air plastron[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(3): 52-59. doi: 10.11729/syltlx20200025
Citation: CHEN Zhengyun, ZHANG Qingfu, PAN Chong, et al. An experimental study on drag reduction of superhydrophobic rotating disk with air plastron[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(3): 52-59. doi: 10.11729/syltlx20200025

An experimental study on drag reduction of superhydrophobic rotating disk with air plastron

doi: 10.11729/syltlx20200025
  • Received Date: 2020-02-25
  • Rev Recd Date: 2020-04-07
  • Publish Date: 2021-06-25
  • Drag reduction performance of superhydrophobic disks in a Von Kármán swirling flow with Re~O(105) was experimentally studied. Two superhydrophobic disks, which have different microstructures, i.e., one with micron-scale homogeneous roughness (abbreviated as SHS#1) and the other with additional millimeter-scale nonhomogeneous grid pattern (abbreviated as SHS#2), have been tested. Both SHS#1 and SHS#2 are prepared by the method of physically spraying nano-scale hydrophobic particles onto an acrylic-plate substrate. The grid pattern on SHS#2 is obtained by applying a mask of wire mesh during the spraying procedure. The mean skin-friction drag on the rotating disk was measured by a torquemeter. It is shown that for the superhydrophobic surface to reduce drag in Von Kármán swirling flow, there is a critical Reynolds number Rec. When Re < Rec, the superhydrophobic surface has a stable long-term drag reduction effect, with drag reduction ratio up to 30%; but when Re>Rec, the drag reduction effect is rapidly lost with the increase of Re. Compared to SHS#1, SHS#2 can effectively improve the dynamic stability of the air plastron attached on the surface. Additionally, the air plastron on the superhydrophobic surface can be effectively restored by pulse air injection, and so can the drag reduction effect. This observation indicates a promising strategy for reliable and sustainable drag reduction via superhydrophobic surface.
  • loading
  • [1]
    BULLEE P A, VERSCHOOF R A, BAKHUIS D, et al. Bubbly drag reduction using a hydrophobic inner cylinder in Taylor-Couette turbulence[J]. Journal of Fluid Mechanics, 2020, 883: A61. doi: 10.1017/jfm.2019.894
    [2]
    HU H B, WEN J, BAO L Y, et al. Significant and stable drag reduction with air rings confined by alternated superhydrophobic and hydrophilic strips[J]. Science Advances, 2017, 3(9): e1603288. doi: 10.1126/sciadv.1603288
    [3]
    莫梦婷, 赵文杰, 陈子飞, 等. 海洋减阻技术的研究现状[J]. 摩擦学学报, 2015, 35(4): 505-515. doi: 10.16078/j.tribology.2015.04.020

    MO M T, ZHAO W J, CHEN Z F, et al. Research status of marine drag reduction technologies[J]. Tribology, 2015, 35(4): 505-515. doi: 10.16078/j.tribology.2015.04.020
    [4]
    李山, 杨绍琼, 姜楠. 沟槽面湍流边界层减阻的TRPIV测量[J]. 力学学报, 2013, 45(2): 183-192. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201302007.htm

    LI S, YANG S Q, JIANG N. Trpiv measurement of drag-reduction in the turbulent boundary layer over riblets plate[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(2): 183-192. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201302007.htm
    [5]
    王鑫, 李山, 唐湛棋, 等. 沟槽对湍流边界层中展向涡影响的实验研究[J]. 实验流体力学, 2018, 32(1): 55-63. doi: 10.11729/syltlx20170092

    WANG X, LI S, TANG Z Q, et al. An experimental study on riblet-induced spanwise vortices in turbulent boundary layers[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(1): 55-63. doi: 10.11729/syltlx20170092
    [6]
    黄桥高, 潘光, 胡海豹, 等. 脊状表面航行器模型减阻特性的水洞实验研究[J]. 实验流体力学, 2010, 24(3): 50-53. doi: 10.11729/syltlx20180035

    HUANG Q G, PAN G, HU H B, et al. Investigation about drag reduction characteristic of iblets surface on vehicle model in water tunnel[J]. Journal of Experiments in Fluid Mechanics, 2010, 24(3): 50-53. doi: 10.11729/syltlx20180035
    [7]
    BURNISHEV Y, STEINBERG V. Influence of polymer additives on turbulence in von Karman swirling flow between two disks. II[J]. Physics of Fluids, 2016, 28(3): 033101. doi: 10.1063/1.4942401
    [8]
    朱波, 赵文斌, 李明义, 等. 黄原胶盐溶液减阻及抗剪切特性的实验研究[J]. 实验流体力学, 2018, 32(5): 61-66. http://www.syltlx.com/CN/abstract/abstract11145.shtml

    ZHU B, ZHAO W B, LI M Y, et al. Experimental study on drag reduction and anti-shearing characteristics of xanthan gum solution with NaCl[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(5): 61-66. doi: 1672-9897(2010)03-0050-04
    [9]
    胡海豹, 宋保维, 黄桥高, 等. 水下湍流减阻途径分析[J]. 摩擦学学报, 2010, 30(6): 620-629. doi: 10.16078/j.tribology.2010.06.007

    HU H B, SONG B W, HUANG Q G, et al. Analysis about the approaches of underwater turbulence drag reduction[J]. Tribology, 2010, 30(6): 620-629. doi: 10.16078/j.tribology.2010.06.007
    [10]
    LEE C, CHOI C H, KIM C J. Superhydrophobic drag reduction in laminar flows: a critical review[J]. Experiments in Fluids, 2016, 57(12): 1-20. doi: 10.1007/s00348-016-2264-z
    [11]
    ROTHSTEIN J P. Slip on superhydrophobic surfaces[J]. Annual Review of Fluid Mechanics, 2010, 42(1): 89-109. doi: 10.1146/annurev-fluid-121108-145558
    [12]
    王新亮, 狄勤丰, 张任良, 等. 超疏水表面滑移理论及其减阻应用研究进展[J]. 力学进展, 2010, 40(3): 241-249. https://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ201003002.htm

    WANG X L, DI Q F, ZHANG R L, et al. Progress in theories of super-hydrophobic surface slip effect and its application to drag reduction technology[J]. Advances in Mechanics, 2010, 40(3): 241-249. https://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ201003002.htm
    [13]
    刘铁峰, 王鑫蔚, 唐湛棋, 等. 超疏水表面对湍流边界层相干结构影响的TRPIV实验研究[J]. 实验流体力学, 2019, 33(3): 90-96. doi: 10.11729/syltlx20180101

    LIU T F, WANG X W, TANG Z Q, et al. TRPIV experimental study of the effect of superhydrophobic surface on the coherent structure of turbulent boundary layer[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(3): 90-96. doi: 10.11729/syltlx20180101
    [14]
    POETES R, HOLTZMANN K, FRANZE K, et al. Metastable underwater superhydrophobicity[J]. Physical Review Letters, 2010, 105(16): 166104. doi: 10.1103/PhysRevLett.105.166104
    [15]
    FORSBERG P, NIKOLAJEFF F, KARLSSON M. Cassie-Wenzel and Wenzel-Cassie transitions on immersed superhydrophobic surfaces under hydrostatic pressure[J]. Soft Matter, 2011, 7(1): 104-109. doi: 10.1039/c0sm00595a
    [16]
    SAMAHA M A, VAHEDI TAFRESHI H, GAD-EL-HAK M. Sustainability of superhydrophobicity under pressure[J]. Physics of Fluids, 2012, 24(11): 112103. doi: 10.1063/1.4766200
    [17]
    吕鹏宇, 薛亚辉, 段慧玲. 超疏水材料表面液-气界面的稳定性及演化规律[J]. 力学进展, 2016, 46(0): 179-225. https://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ201600004.htm

    LV P Y, XUE Y H, DUAN H L. Stability and evolution of liquid-gas interfaces on superhydrophobic surfaces[J]. Advances in Mechanics, 2016, 46(0): 179-225. https://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ201600004.htm
    [18]
    TRUESDELL R, MAMMOLI A, VOROBIEFF P, et al. Drag reduction on a patterned superhydrophobic surface[J]. Physical Review Letters, 2006, 97(4): 044504. doi: 10.1103/physrevlett.97.044504
    [19]
    胡海豹, 王德政, 鲍路瑶, 等. 基于润湿阶跃的水下大尺度气膜封存方法[J]. 物理学报, 2016, 65(13): 201-207. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201613023.htm

    HU H B, WANG D Z, BAO L Y, et al. Maintaining large-scale gas layer by creating wettability difference on surfaces under water[J]. Acta Physica Sinica, 2016, 65(13): 201-207. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201613023.htm
    [20]
    王宝, 汪家道, 陈大融. 基于微空泡效应的疏水性展向微沟槽表面水下减阻研究[J]. 物理学报, 2014, 63(7): 214-220. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201407029.htm

    WANG B, WANG J D, CHEN D R. Drag reduction on hydrophobic transverse grooved surface by underwater gas formed naturally[J]. Acta Physica Sinica, 2014, 63(7): 214-220. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201407029.htm
    [21]
    郝鹏飞, 汪幸愉, 姚朝晖, 等. 疏水微槽道内层流减阻的实验研究[J]. 实验流体力学, 2009, 23(3): 7-11, 15. http://www.syltlx.com/CN/abstract/abstract9763.shtml

    HAO P F, WANG X Y, YAO Z H, et al. Experimental study on laminar drag reduction in hydrophobic microchannels[J]. Journal of Experiments in Fluid Mechanics, 2009, 23(3): 7-11, 15. doi: 1672-9897(2009)03-0007-06
    [22]
    CAI C J, SANG N N, TENG S C, et al. Superhydrophobic surface fabricated by spraying hydrophobic R974 nanoparticles and the drag reduction in water[J]. Surface and Coatings Technology, 2016, 307: 366-373. doi: 10.1016/j.surfcoat.2016.09.009
    [23]
    DU P, WEN J, ZHANG Z Z, et al. Maintenance of air layer and drag reduction on superhydrophobic surface[J]. Ocean Engineering, 2017, 130: 328-335. doi: 10.1016/j.oceaneng.2016.11.028
    [24]
    LEE C, KIM C J. Underwater restoration and retention of gases on superhydrophobic surfaces for drag reduction[J]. Physical Review Letters, 2011, 106(1): 014502. doi: 10.1103/physrevlett.106.014502
    [25]
    LEE J, YONG K. Combining the lotus leaf effect with artificial photosynthesis: regeneration of underwater super hydrophobicity of hierarchical ZnO/Si surfaces by solar water splitting[J]. NPG Asia Materials, 2015, 7(7): e201. doi: 10.1038/am.2015.74
    [26]
    冯家兴, 胡海豹, 卢丙举, 等. 超疏水沟槽表面通气减阻实验研究[J]. 力学学报, 2020, 52(1): 24-30. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB202001003.htm

    FENG J X, HU H B, LU B J, et al. Experimental study on drag reduction characteristics of superhydrophobic groove surfaces with ventilation[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(1): 24-30. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB202001003.htm
    [27]
    张梦卓, 胡海豹, 杜鹏, 等. 超疏水表面水下电解补气方法研究[J]. 实验流体力学, 2020, 34(1): 67-71. doi: 10.11729/syltlx20190097

    ZHANG M Z, HU H B, DU P, et al. Research on gas replenishment for submersed superhydrophobic surface by electrolysis[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(1): 67-71. doi: 10.11729/syltlx20190097
    [28]
    BRADY J F, DURLOFSKY L. On rotating disk flow[J]. Journal of Fluid Mechanics, 1987, 175: 363. doi: 10.1017/s0022112087000430
    [29]
    BURNISHEV Y, STEINBERG V. Turbulence and turbulent drag reduction in swirling flow: Inertial versus viscous forcing[J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 2015, 92(2): 023001. doi: 10.1103/physreve.92.023001
    [30]
    MOAVEN K, RAD M, TAEIBI-RAHNI M. Experimental investigation of viscous drag reduction of superhydrophobic nano-coating in laminar and turbulent flows[J]. Experimental Thermal and Fluid Science, 2013, 51: 239-243. doi: 10.1016/j.expthermflusci.2013.08.003
    [31]
    MUKHERJEE A, LUKASCHUK S, BURNISHEV Y, et al. Precise measurements of torque in von Karman swirling flow driven by a bladed disk[J]. Journal of Turbulence, 2018, 19(8): 647-663. doi: 10.1080/14685248.2018.1494833
    [32]
    MUKHERJEE A, STEINBERG V. Von Kármán swirling flow between a rotating and a stationary smooth disk: Experiment[J]. Physical Review Fluids, 2018, 3: 014102. doi: 10.1103/physrevfluids.3.014102
    [33]
    CHOI W, BYEON H, PARK J Y, et al. Effects of pressure gradient on stability and drag reduction of superhydrophobic surfaces[J]. Applied Physics Letters, 2019, 114(10): 101603. doi: 10.1063/1.5085081
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article Metrics

    Article views (638) PDF downloads(46) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return