Volume 35 Issue 1
Feb.  2021
Turn off MathJax
Article Contents
HE Zuqiang, WANG Ping, Meenatchidevi Murugesan, et al. Experimental investigation on thermoacoustic oscillation of a new dual-swirl combustor[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(1): 44-52. doi: 10.11729/syltlx20200021
Citation: HE Zuqiang, WANG Ping, Meenatchidevi Murugesan, et al. Experimental investigation on thermoacoustic oscillation of a new dual-swirl combustor[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(1): 44-52. doi: 10.11729/syltlx20200021

Experimental investigation on thermoacoustic oscillation of a new dual-swirl combustor

doi: 10.11729/syltlx20200021
  • Received Date: 2020-02-24
  • Rev Recd Date: 2020-05-27
  • Publish Date: 2021-02-25
  • In this paper, a new type of dual-swirl combustor is tested. The effects of two varying processes of combustion state parameters on the thermoacoustic oscillation characteristics of flame are studied. The two processes are: keep methane volume flow rate constant and reduce the equivalence ratio from 0.900 to 0.725 and then increase it back to 0.925; keep the equivalence ratio constant as 0.850 and increase the premixed gas volume flow. The results show that there are two distinct flame patterns of M-shaped and V-shaped in this combustor. In process 1, the flame changes from unstable M-shaped flame to stable V-shaped flame with decreaseing equivalence ratio, and then changes to M-shaped flame with increaseing equivalence ratio, the combustor exists hysteresis phenomenon; In process 2, Thermoacoustic oscillation is only found at the initial flow rate, and the flame becomes stable with increaseing flow rate.Through the analysis of the power spectrum characteristics and phase space reconstruction of the pressure fluctuation signal, it is found that there are unstable frequencies around 400.0 and 256.0 Hz in this dual-swirl combustor.
  • loading
  • [1]
    HUANG Y, YANG V. Dynamics and stability of lean-premixed swirl-stabilized combustion[J]. Progress in Energy and Combustion Science, 2009, 35(4): 293-364. doi: 10.1016/j.pecs.2009.01.002
    [2]
    GUIBERTI T F, DUROX D, SCOUFLAIRE P, et al. Impact of heat loss and hydrogen enrichment on the shape of confined swirling flames[J]. Proceedings of the Combustion Institute, 2015, 35(2): 1385-1392. doi: 10.1016/j.proci.2014.06.016
    [3]
    GUIBERTI T F, DUROX D, ZIMMER L, et al. Analysis of topology transitions of swirl flames interacting with the combustor side wall[J]. Combustion and Flame, 2015, 162(11): 4342-4357. doi: 10.1016/j.combustflame.2015.07.001
    [4]
    房爱兵. 燃气轮机合成气燃烧室燃烧稳定性的实验研究[D]. 北京: 中国科学院研究生院(工程热物理研究所), 2007.

    FANG A B. Investigation of combustion instability in syngas combustor of gas turbine[D]. Beijing: Graduate School of the Chinese Academy of Sciences (Institute of Engineering Thermophysics), 2007.
    [5]
    张昊, 朱民. 热声耦合振荡燃烧的实验研究与分析[J]. 推进技术, 2010, 31(6): 730-744. doi: 10.13675/j.cnki.tjjs.2010.06.017

    ZHANG H, ZHU M. Experimental study and analysis of thermo-acoustic instabilities in natural gas premixed flames[J]. Journal of Propulsion Technology, 2010, 31(6): 730-744. doi: 10.13675/j.cnki.tjjs.2010.06.017
    [6]
    张昊, 黄铮, 朱民. 自激振荡预混燃烧的实验[J]. 航空动力学报, 2011, 26(1): 36-42. doi: 10.1007/s12182-011-0123-3

    ZHANG H, HUANG Z, ZHU M. Experimental study on self-excited oscillations in premixed combustor[J]. Journal of Aerospace Power, 2011, 26(1): 36-42. doi: 10.1007/s12182-011-0123-3
    [7]
    杨甫江, 郭志辉, 任立磊. 贫燃预混旋流火焰的燃烧不稳定性[J]. 燃烧科学与技术, 2014, 20(1): 51-57. doi: 10.11715/rskxjs.R201306009

    YANG F J, GUO Z H, REN L L. Combustion instability of lean premixed swirl flame[J]. Journal of Combustion Science and Technology, 2014, 20(1): 51-57. doi: 10.11715/rskxjs.R201306009
    [8]
    林枫, 王威, 李名家, 等. 燃气轮机振荡燃烧特性试验研究[J]. 热能动力工程, 2017, 32(s1): 62-68, 130. doi: 10.16146/j.cnki.rndlgc.2017.YY.010

    LIN F, WANG W, LI M J, et al. Experimental study on combustion oscillating characteristics of gas turbine combustor[J]. Journal of Engineering for Thermal Energy and Power, 2017, 32(s1): 62-68, 130. doi: 10.16146/j.cnki.rndlgc.2017.YY.010
    [9]
    TAAMALLAH S, LABRY Z A, SHANBHOGUE S J, et al. Thermo-acoustic instabilities in lean premixed swirl-stabilized combustion and their link to acoustically coupled and decoupled flame macrostructures[J]. Proceedings of the Combustion Institute, 2015, 35(3): 3273-3282. doi: 10.1016/j.proci.2014.07.002
    [10]
    FRITSCHE D, M FVRI, BOULOUCHOSK. An experimental investigation of thermoacoustic instabilities in a premixed swirl-stabilized flame[J]. Combustion and Flame, 2007, 151(1-2): 29-36. doi: 10.1016/j.combustflame.2007.05.012
    [11]
    DUROX D, MOECK J P, BOURGOUIN J F, et al. Flame dynamics of a variable swirl number system and instability control[J]. Combustion and Flame, 2013, 160(9): 1729-1742. doi: 10.1016/j.combustflame.2013.03.004
    [12]
    KIM K T, LEE J G, LEE H J, et al. Characterization of forced flame response of swirl-stabilized turbulent lean-premixed flames in a gas turbine combustor[J]. Journal of Engineering for Gas Turbines and Power: Transactions of the ASME, 2010, 132(4): 041502-1. doi: 10.1115/1.3204532
    [13]
    KIM K T, HOCHGREB S. The nonlinear heat release response of stratified lean-premixed flames to acoustic velocity oscillations[J]. Combustion and Flame, 2011, 158(12): 2482-2499. doi: 10.1016/j.combustflame.2011.05.016
    [14]
    TERHAAR S, REICHEL T G, SCHRÖDINGER C, et al. Vortex breakdown types and global modes in swirling combustor flows with axial injection[J]. Journal of propulsion and power, 2015, 31(1): 219-229. doi: 10.2514/1.B35217
    [15]
    TANG H J, YANG D, ZHANG T F, et al. Characteristics of flame modes for a conical bluff body burner with a central fuel jet[J]. Journal of Engineering for Gas Turbines and Power, 2013, 135(9): 091507. doi: 10.1115/1.4024951
    [16]
    TAKENS F. Detecting strange attractors in turbulence[C]//RAND D, YOUNG L S. Dynamical Systems and Turbulence, Warwick 1980. Lecture Notes in Mathematics, vol 898. Berlin, Heidelberg: Springer, 2006. doi: 10.1007/BFb0091924
    [17]
    ABARBANEL H D I, BROWN R, SIDOROWICH J J, et al. The analysis of observed chaotic data in physical systems[J]. Reviews of Modern Physics, 1993, 65(4): 1331-1392. doi: 10.1103/RevModPhys.65.1331
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(3)

    Article Metrics

    Article views (357) PDF downloads(33) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return