Volume 35 Issue 1
Feb.  2021
Turn off MathJax
Article Contents
LIU Lixia, WANG Kangjun, WANG Xinwei, et al. TRPIV experimental investigation of drag reduction mechanism in turbulent boundary layer over superhydrophobic-riblet surface[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(1): 117-125. doi: 10.11729/syltlx20200001
Citation: LIU Lixia, WANG Kangjun, WANG Xinwei, et al. TRPIV experimental investigation of drag reduction mechanism in turbulent boundary layer over superhydrophobic-riblet surface[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(1): 117-125. doi: 10.11729/syltlx20200001

TRPIV experimental investigation of drag reduction mechanism in turbulent boundary layer over superhydrophobic-riblet surface

doi: 10.11729/syltlx20200001
  • Received Date: 2020-01-03
  • Rev Recd Date: 2020-04-22
  • Publish Date: 2021-02-25
  • The instantaneous velocity vector fields of turbulent boundary layers over the hydrophilic surface, the superhydrophobic (SH) surface and the superhydrophobic-riblet (SR) surface were measured using Time-Resolved Particle Image Velocimetry(TRPIV). Drag reduction rates of 14.6% and 20.7% for the SH surface and the SR surface respectively were acquired by comparing with the friction coefficient of the hydrophilic surface. By comparing the tendency of the turbulence intensity, it is found that the normal turbulence fluctuation intensity of the hydrophilic surface, the SH surface and the SR surface has no remarkable differences, but the streamwise turbulence fluctuation intensity shows a weakening trend in the region of y+ < 150 at the same wall-normal position. By using the spatial filtering method based on Fourier transform, the instantaneous fluctuating velocity field is divided into the large-scale part with the wavelength greater than δ and the small-scale part with the wavelength less than δ. It is found that the inhibitory effect of the SH surface and the SR surface on the streamwise turbulence fluctuation intensity of the large-scale part can reach the wall-normal position of y+=150, while the inhibitory effect on the streamwise turbulence fluctuation intensity of the small-scale part can only reach the normal position of y+=100. Through the conditional sampling and phase average methods, it is found that at the region of yref=0.1δ, compared with the hydrophilic surface, the positive large-scale streamwise fluctuating intensity and the negative wall-normal fluctuating intensity on the SH surface and the SR surface are increasing while the negative large-scale streamwise fluctuating and positive wall-normal fluctuating intensities on the SH surface and the SR surface are decreasing, and there is a gap between the contour with the value of zero and the reference position of the conditional sampling. Comparing the vortical strength of TBL on different wall, it is found that the vortex intensity value of the hydrophilic surface, the SH surface and the SR surface becomes weaker in turn, and hence we can conclude that the SR surface could acquire a higher drag reduction rate than the SH surface, via suppressing the motion of vortices at the near wall region.
  • loading
  • [1]
    BECHERT D W, BRUSE M, HAGE W, et al. Experiments on drag-reducing surfaces and their optimization with an adjustable geometry[J]. Journal of Fluid Mechanics, 1997, 338: 59-87. doi: 10.1017/s0022112096004673
    [2]
    CHAMORRO L P, ARNDT R E A, SOTIROPOULOS F. Drag reduction of large wind turbine blades through riblets: Evaluation of riblet geometry and application strategies[J]. Renewable Energy, 2013, 50: 1095-1105. doi: 10.1016/j.renene.2012.09.001
    [3]
    MAMORI H, YAMAGUCHI K, SASAMORI M, et al. Analysis of vortical structure over sinusoidal riblet surface in turbulent channel flow by means of Dual-plane stereoscopic PIV measurement[C]//Proc of the APS Division of Fluid Dynamics Meeting. 2016.
    [4]
    BENSCHOP H O G, GUERIN A J, BRINKMANN A, et al. Drag-reducing riblets with fouling-release properties: development and testing[J]. Biofouling, 2018, 34(5): 532-544. doi: 10.1080/08927014.2018.1469747
    [5]
    YANG S Q, LI S, TIAN H P, et al. Tomographic PIV investigation on coherent vortex structures over shark-skin-inspired drag-reducing riblets[J]. Acta Mechanica Sinica, 2016, 32(2): 284-294. doi: 10.1007/s10409-015-0541-3
    [6]
    LI S, JIANG N, YANG S Q, et al. Coherent structures over riblets in turbulent boundary layer studied by combining time-resolved particle image velocimetry (TRPIV), proper orthogonal decomposition (POD), and finite-time Lyapunov exponent (FTLE)[J]. Chinese Physics B, 2018, 27(10): 104701. doi: 10.1088/1674-1056/27/10/104701
    [7]
    李山, 姜楠, 杨绍琼. 正弦波沟槽对湍流边界层相干结构影响的TR-PIV实验研究[J]. 物理学报, 2019, 68(7): 188-198. doi: 10.7498/aps.68.20181875

    LI S, JIANG N, YANG S Q. Influence of sinusoidal riblets on the coherent structures in turbulent boundary layer studied by time-resolved particle image velocimetry[J]. Acta Physica Sinica, 2019, 68(7): 188-198. doi: 10.7498/aps.68.20181875
    [8]
    王鑫, 李山, 唐湛棋, 等. 沟槽对湍流边界层中展向涡影响的实验研究[J]. 实验流体力学, 2018, 32(1): 55-63. doi: 10.11729/syltlx20170092

    WANG X, LI S, TANG Z Q, et al. An experimental study onriblet-induced spanwise vortices in turbulent boundary layers[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(1): 55-63. doi: 10.11729/syltlx20170092
    [9]
    PARK H, SUN G Y, KIM C J. Superhydrophobic turbulent drag reduction as a function of surface grating parameters[J]. Journal of Fluid Mechanics, 2014, 747: 722-734. doi: 10.1017/jfm.2014.151
    [10]
    RASTEGARI A, AKHAVAN R. On the mechanism of turbulent drag reduction with super-hydrophobic surfaces[J]. Journal of Fluid Mechanics, 2015, 773: R4. doi: 10.1017/jfm.2015.266
    [11]
    GOSE J W, GOLOVIN K, BOBAN M, et al. Characterization of superhydrophobic surfaces for drag reduction in turbulent flow[J]. Journal of Fluid Mechanics, 2018, 845: 560-580. doi: 10.1017/jfm.2018.210
    [12]
    ARENAS I, GARCÍA E, FU M K, et al. Comparison between super-hydrophobic, liquid infused and rough surfaces: a direct numerical simulation study[J]. Journal of Fluid Mechanics, 2019, 869: 500-525. doi: 10.1017/jfm.2019.222
    [13]
    ROWIN W A, GHAEMI S. Streamwise and spanwise slip over a superhydrophobic surface[J]. Journal of Fluid Mechanics, 2019, 870: 1127-1157. doi: 10.1017/jfm.2019.225
    [14]
    FAIRHALL C T, ABDERRAHAMAN-ELENA N, GARCÍA-MAYORAL R. The effect of slip and surface texture on turbulence over superhydrophobic surfaces[J]. Journal of Fluid Mechanics, 2019, 861: 88-118. doi: 10.1017/jfm.2018.909
    [15]
    余永生, 魏庆鼎. 疏水性材料减阻特性实验研究[J]. 实验流体力学, 2005, 19(2): 60-66. doi: 10.3969/j.issn.1672-9897.2005.02.012

    YU Y S, WEI Q D. Experiments on the drag-reduction of non-wetting materials[J]. Journal of Experiments in Fluid Mechanics, 2005, 19(2): 60-66. doi: 10.3969/j.issn.1672-9897.2005.02.012
    [16]
    ZHANG J X, TIAN H P, YAO Z H, et al. Evolutions of hairpin vortexes over a superhydrophobic surface in turbulent boundary layer flow[J]. Physics of Fluids, 2016, 28(9): 095106. doi: 10.1063/1.4962513
    [17]
    ZHANG J X, TIAN H P, YAO Z H, et al. Mechanisms of drag reduction of superhydrophobic surfaces in a turbulent boundary layer flow[J]. Experiments in Fluids, 2015, 56(9): 179. doi: 10.1007/s00348-015-2047-y
    [18]
    胡海豹, 何强, 鲍路瑶, 等. 二级规则微结构对低表面能纳米通道内微流动的影响[J]. 机械工程学报, 2014, 50(12): 165-170. doi: 10.3901/JME.2014.12.165

    HU H B, HE Q, BAO L Y, et al. Effect of secondary regular microstructure on the micro-flows in nano-channel with low surface energy[J]. Chinese Journal of Mechanical Engineering, 2014, 50(12): 165-170. doi: 10.3901/JME.2014.12.165
    [19]
    苏健, 田海平, 姜楠. 逆向涡对超疏水壁面减阻影响的TRPIV实验研究[J]. 力学学报, 2016, 48(5): 1033-1039. doi: 10.6052/0459-1879-16-140

    SU J, TIAN H P, JIANG N. Trpiv experimental investigation of the effect of retrograde vortex on drag-reduction mechanism over superhydrophobic surfaces[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(5): 1033-1039. doi: 10.6052/0459-1879-16-140
    [20]
    TIAN H P, ZHANG J X, JIANG N, et al. Effect of hierarchical structured superhydrophobic surfaces on coherent structures in turbulent channel flow[J]. Experimental Thermal and Fluid Science, 2015, 69: 27-37. doi: 10.1016/j.expthermflusci.2015.07.018
    [21]
    TIAN H P, ZHANG J X, WANG E D, et al. Experimental investigation on drag reduction in turbulent boundary layer oversuperhydrophobic surface by TRPIV[J]. Theoretical and Applied Mechanics Letters, 2015, 5(1): 45-49. doi: 10.1016/j.taml.2015.01.003
    [22]
    刘铁峰, 王鑫蔚, 唐湛棋, 等. 超疏水表面对湍流边界层相干结构影响的TRPIV实验研究[J]. 实验流体力学, 2019, 33(3): 90-96. doi: 10.11729/syltlx20180101

    LIU T F, WANG X W, TANG Z Q, et al. TRPIV experimental study of the effect of superhydrophobic surface on the coherent structure of turbulent boundary layer[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(3): 90-96. doi: 10.11729/syltlx20180101
    [23]
    李艳峰, 于志家, 于跃飞, 等. 铝合金基体上超疏水表面的制备[J]. 高校化学工程学报, 2008, 22(1): 6-10. doi: 10.3321/j.issn:1003-9015.2008.01.002

    LI Y F, YU Z J, YU Y F, et al. Fabrication of super-hydrophobic surfaces on aluminum alloy[J]. Journal of Chemical Engineering of Chinese Universities, 2008, 22(1): 6-10. doi: 10.3321/j.issn:1003-9015.2008.01.002
    [24]
    潘光, 黄明明, 胡海豹, 等. Spalding公式在脊状表面湍壁摩擦力测量中的应用[J]. 力学学报, 2009, 41(1): 15-20.

    PAN G, HUANG M M, HU H B, et al. Application of spalding formula in wall friction stress measurement on riblet surface[J]. Chinese Journal of Theoretical and Applied Mechanics, 2009, 41(1): 15-20.
    [25]
    王康俊, 白建侠, 唐湛棋, 等. 用平均速度剖面法测量湍流边界层壁面摩擦速度的对比研究[J]. 实验力学, 2019, 34(2): 209-216. doi: 10.7520/1001-4888-17-190

    WANG K J, BAI J X, TANG Z Q, et al. Comparative study of turbulent boundary layer wall friction velocity measured by average velocity profile method[J]. Journal of Experimental Mechanics, 2019, 34(2): 209-216. doi: 10.7520/1001-4888-17-190
    [26]
    ADRIAN R J, MEINHART C D, TOMKINS C D. Vortex organization in the outer region of the turbulent boundary layer[J]. Journal of Fluid Mechanics, 2000, 422: 1-54. doi: 10.1017/s0022112000001580
    [27]
    HUTCHINS N, MARUSIC I. Large-scale influences in near-wall turbulence[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2007, 365(1852): 647-664. doi: 10.1098/rsta.2006.1942
    [28]
    ROBINSON S K. Coherent motions in the turbulent boundary layer[J]. Annual Review of Fluid Mechanics, 1991, 23(1): 601-639. doi: 10.1146/annurev.fl.23.010191.003125
    [29]
    FUKAGATA K, IWAMOTO K, KASAGI N. Contribution of Reynolds stress distribution to the skin friction in wall-bounded flows[J]. Physics of Fluids, 2002, 14(11): L73-L76. doi: 10.1063/1.1516779
    [30]
    ZHOU J, ADRIAN R J, BALACHANDAR S, et al. Mechanisms for generating coherent packets of hairpin vortices in channel flow[J]. Journal of Fluid Mechanics, 1999, 387: 353-396. doi: 10.1017/s002211209900467x
    [31]
    PERRY A E, MARUŠIĆ I. A wall-wake model for the turbu-lence structure of boundary layers. Part 1. Extension of the attached eddy hypothesis[J]. Journal of Fluid Mechanics, 1995, 298: 361-388. doi: 10.1017/s0022112095003351
    [32]
    MARUSIC I, KUNKEL G J. Streamwise turbulence intensity formulation for flat-plate boundary layers[J]. Physics of Fluids, 2003, 15(8): 2461-2464. doi: 10.1063/1.1589014
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(1)

    Article Metrics

    Article views (288) PDF downloads(32) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return