Volume 35 Issue 1
Feb.  2021
Turn off MathJax
Article Contents
WANG Yulan, FAN Xiongjie, GAO Wei, et al. Development of optically accessible gas turbine model combustor and its flow field testing[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(1): 18-33. doi: 10.11729/syltlx20190171
Citation: WANG Yulan, FAN Xiongjie, GAO Wei, et al. Development of optically accessible gas turbine model combustor and its flow field testing[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(1): 18-33. doi: 10.11729/syltlx20190171

Development of optically accessible gas turbine model combustor and its flow field testing

doi: 10.11729/syltlx20190171
  • Received Date: 2020-01-09
  • Rev Recd Date: 2020-06-09
  • Publish Date: 2021-02-25
  • The combustion in the chamber of aero-engine involving the aerodynamics of swirling air streams, fuel atomization, evaporation, the mixing of fuel droplets with air streams, and chemical reactions is a multiphase complex process under the conditions of high pressure and high temperature. The characteristics of the flow field play a significant role in determining combustion performances of the combustors by affecting the processes of fuel atomization and combustion. The interpretations off low mechanism and accurate tests of the highly swirling flows inside the combustors are always being one of the major challenges posed to the combustion researchers and engineers.In order to learn the knowledge of experimental setups of optically accessible gas turbine combustor facilities, and to have a grasp of swirling flow characteristics in swirl-cup traditional combustors and staged combustors combining premixed and diffusion combustion technologies, the design methods of the optically accessible model combustor, the organization mechanism of swirling flow, and the flow structures in typical combustors of aero-engines are analyzed and summarized in this study. The discussions in this paper may facilitate the research and development of aero-engine combustors.
  • loading
  • [1]
    金如山, 索建秦. 先进燃气轮机燃烧室[M]. 北京: 航空工业出版社, 2016.

    JIN R S, SUO J Q. Advanced gas turbine combustor[M]. Beijing: Aviation industry press, 2016.
    [2]
    林宇震, 林阳, 张弛, 等. 先进燃烧室分级燃烧空气流量分配的探讨[J]. 航空动力学报, 2010, 25(9): 1923-1930. doi: 10.13224/j.cnki.jasp.2010.09.007

    LIN Y Z, LIN Y, ZHANG C, et al. Discussion on combustion airflow distribution of advanced staged combustor[J]. Journal of Aerospace Power, 2010, 25(9): 1923-1930. doi: 10.13224/j.cnki.jasp.2010.09.007
    [3]
    林宇震, 许全宏, 刘高恩. 燃气轮机燃烧室[M]. 北京: 国防工业出版社, 2008.

    LIN Y Z, XU Q H, LIU G E. Gas turbine combustor[M]. Beijing: National Defense Industry Press, 2008.
    [4]
    LEFEBVRE A H, BALLAL D R. Gas turbine combustion: alternative fuels and emissions[M]. 3rd ed. Boca Raton, FL: CRC Press, 2010.
    [5]
    张弛, 林宇震, 徐华胜, 等. 民用航空发动机低排放燃烧室技术发展现状及水平[J]. 航空学报, 2014, 35(2): 332-350. doi: 10.7527/S1000-6893.2013.0358

    ZHANG C, LIN Y Z, XU H S, et al. Development status and level of low emissions combustor technologies for civil aero-engine[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(2): 332-350. doi: 10.7527/S1000-6893.2013.0358
    [6]
    ALDÉN M, BOOD J, LI Z S, et al. Visualization and understanding of combustion processes using spatially and temporally resolved laser diagnostic techniques[J]. Proceedings of the Combustion Institute, 2011, 33(1): 69-97. doi: 10.1016/j.proci.2010.09.004
    [7]
    BOUDIER G, GICQUEL L Y M, POINSOT T, et al. Comparison of LES, RANS and experiments in an aeronautical gas turbine combustion chamber[J]. Proceedings of the Combustion Institute, 2007, 31(2): 3075-3082. doi: 10.1016/j.proci.2006.07.067
    [8]
    MONGIA H C, AL-ROUB M, DANIS A, et al. Swirl cup modeling part Ⅰ[R]. AIAA 2001-3576, 2001.
    [9]
    FU Y Q, CAI J, JENG S M, et al. Confinement effects on the swirling flow of a counter-rotating swirl cup[C]//Proceedings of the ASME Turbo Expo 2005: Power for Land, Sea, and Air, Reno, Nevada, USA. 2008: 469-478. doi: 10.1115/GT2005-68622
    [10]
    KAO Y H, DENTON M, WANG X H, et al. Experimental spray structure and combustion of a linearly-arranged 5-swirler array[C]//Proceedings of the ASME Turbo Expo 2015: Turbine Technical Conference and Exposition. 2015. doi: 10.1115/GT2015-42509
    [11]
    FU Y Q, CAI J, JENG S M, et al. Reacting spray structure of a counter-rotating swirl cup[C]//Proceedings of the ASME Turbo Expo 2005: Power for Land, Sea, and Air, 2008. doi: 10.1115/GT2005-68490
    [12]
    MOHAMMAD B S, CAI J, JENG S M. Gas turbine single annular combustor sector aerodynamics[R]. AIAA 2010-579, 2010.
    [13]
    HASSA C, VOIGT P, LEHMANN B, et al. Flow field mixing characteristics of an aero-engine combustor-part Ⅰ: experimental results[R]. AIAA 2002-3709, 2002. doi: 10.2514/6.2002-3709
    [14]
    MOHAMMAD B, JENG S M, ANDAC M G. Influence of the primary jets and fuel injection on the aerodynamics of a prototype annular gas turbine combustor sector[C]//Proceedings of the ASME Turbo Expo 2010: Power for Land, Sea, and Air, 2010. doi: 10.1115/GT2010-23083
    [15]
    KWONG W Y P, STEINBERG A M. Effect of inter-nozzle spacing on lean blowoff performance of a linear multi-nozzle combustor[R]. AIAA 2019-2244, 2019. doi: 10.2514/6.2019-2244
    [16]
    WILLERT C, JARIUS M. Planar flow field measurements in atmospheric and pressurized combustion Chambers[J]. Experiments in Fluids, 2002, 33(6): 931-939. doi: 10.1007/s00348-002-0515-7
    [17]
    COCHET A, BODOC V, BROSSARD C, et al. ONERA test facilities for combustion in aero gas turbine engines, and associated optical diagnostics[J]. AerospaceLab, 2016(11): 16 doi: 10.12762/2016.AL11-01
    [18]
    XIAO Y L, WANG Z P, LAI Z X, et al. Flow field and species concentration measurements in the primary zone of an aero-engine combustion chamber[J]. Advances in Mechanical Engineering, 2018, 10(1): 1-11. doi: 10.1177/1687814017748052
    [19]
    SULABH KUMAR D. An experimental study of the stable and unstable operation of an llp gas turbine combustor[D]. Ann Arbor, MI: The University of Michigan, 2008.
    [20]
    DHANUKA S K, TEMME J E, DRISCOLL J F. Lean-limit combustion instabilities of a lean premixed prevaporized gas turbine combustor[J]. Proceedings of the Combustion Institute, 2011, 33(2): 2961-2966. doi: 10.1016/j.proci.2010.07.011
    [21]
    CARL M, FRODERMANN M, BEHRENDT T, et al. Experimental investigations of an axially staged combustor sector with optical diagnostics at realistic operating conditions[C]//Proceedings of the RTO AVT Symposium on Gas Turbine Engine Combustion, Emissions and Alternative Fuels. 1998.
    [22]
    ZARZALIS N, RIPPLINGER T, HOHMANN S, et al. Low-NOx combustor development pursued within the scope of the Engine 3E German national research program in a cooperative effort among engine manufacturer MTU, University of Karlsruhe and DLR German Aerospace Research Center[J]. Aerospace Science and Technology, 2002, 6(7): 531-544. doi: 10.1016/S1270-9638(02)01179-3
    [23]
    FREITAG S, BEHRENDT T, HEINZE J, et al. Study of an airblast atomizer spray in a lean burn aero-engine model combustor at engine conditions[C]//Proceedings of the 24th European Conference on Liquid Atomization and Spray Systems. 2011.
    [24]
    MATSUURA K, KUROSAWA Y, YAMADA H. Develop-ment of high-pressure spray test facility for evaluation of aero-engine fuel injector performance[R]. JAXA RM06-010, 2007.
    [25]
    MATSUURA K, SUAUKI K, KUROSAWA Y. Effects of ambient pressure on spray characteristics of a high-shear-type aero-engine airblast fuel injector[C]//Proceedings of the 22nd European Conference on Liquid Atomization and Spray Systems (ILASS). 2008.
    [26]
    MAKIDA M, YAMADA H, SHIMODAIRA K, et al. Verification of low NOx performance of simple primary rich combustion approach by a newly established full annular combustor test facility[C]//Proceedings of the ASME Turbo Expo 2008: Power for Land, Sea, and Air. 2009. doi: 10.1115/GT2008-51419
    [27]
    YAMAMOTO T, SHIMODAIRA K, KUROSAWA Y, et al. Research and development of staging fuel nozzle for aeroengine[C]//Proceedings of the ASME Turbo Expo 2009: Power for Land, Sea, and Air. 2010. doi: 10.1115/GT2009-59852
    [28]
    KOBAYASHI M, OGATA H, ODA T, et al. Improvement on ignition performance for a lean staged low NOx combustor[C]//Proceedings of the ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition. 2012. doi: 10.1115/GT2011-46187
    [29]
    MATSUYAMA R, KOBAYASHI M, OGATA H, et al. Development of a lean staged combustor for small aero-engines[C]//Proceedings of the ASME Turbo Expo 2012: Turbine Technical Conference and Exposition. 2013. doi: 10.1115/GT2012-68272
    [30]
    颜应文, 徐榕, 邓远灏, 等. 贫油预混预蒸发低污染燃烧室头部流场研究[J]. 航空学报, 2012, 33(6): 965-976. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201206002.htm

    YAN Y W, XU R, DENG Y H, et al. Flow field study for head of lean premixed prevaporized low-emission combustor[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(6): 965-976. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201206002.htm
    [31]
    邓远灏, 颜应文, 党龙飞, 等. 贫油预混预蒸发低污染燃烧室流场特性试验[J]. 航空动力学报, 2015, 30(10): 2416-2424. doi: 10.13224/j.cnki.jasp.2015.10.016

    DENG Y H, YAN Y W, DANG L F, et al. Experiment of flow field characteristics in a lean premixed prevaporized low emission combustor[J]. Journal of Aerospace Power, 2015, 30(10): 2416-2424. doi: 10.13224/j.cnki.jasp.2015.10.016
    [32]
    颜应文, 党龙飞, 邓远灏, 等. LPP低污染燃烧室单头部燃烧性能试验[J]. 航空动力学报, 2015, 30(4): 814-822. doi: 10.13224/j.cnki.jasp.2015.04.007

    YAN Y W, DANG L F, DENG Y H, et al. Experiment of combustion performance in LPP low emission combustor with single dome[J]. Journal of Aerospace Power, 2015, 30(4): 814-822. doi: 10.13224/j.cnki.jasp.2015.04.007
    [33]
    WANG B, ZHANG C, LIN Y Z, et al. Influence of main swirler vane angle on the ignition performance of TeLESS-Ⅱ combustor[J]. Journal of Engineering for Gas Turbines and Power, 2017, 139(1): 011501. doi: 10.1115/1.4034154
    [34]
    LIU C X, LIU F Q, YANG J H, et al. Experimental investigation of spray and combustion performances of a fuel-staged low emission combustor: effects of main swirl angle[J]. Journal of Engineering for Gas Turbines and Power, 2017, 139(12): 121502. doi: 10.1115/1.4037451
    [35]
    陈柳君, 乐嘉陵, 张俊, 等. 三级轴向旋流燃烧室流场结构研究[J]. 推进技术, 2018, 39(8): 1821-1828. doi: 10.13675/j.cnki.tjjs.2018.08.017

    CHEN L J, LE J L, ZHANG J, et al. Experimental investigation of flow field in an aero-engine combustor with triple-stage axial-rotating swirling[J]. Journal of Propulsion Technology, 2018, 39(8): 1821-1828. doi: 10.13675/j.cnki.tjjs.2018.08.017
    [36]
    CHENF, LIU H. Particle image velocimetry for combustion measurements: Applications and developments[J]. Chinese Journal of Aeronautics, 2018, 31(7): 1407-1427. doi: 10.1016/j.cja.2018.05.010
    [37]
    SO R M C, AHMED S A, MONGIA H C. Jet characteristics in confined swirling flow[J]. Experiments in Fluids, 1985, 3(4): 221-230. doi: 10.1007/bf00265105
    [38]
    KAO Y H, TAMBE S B, JENG S M. Aerodynamics of linearly arranged rad-rad swirlers, effect of number of swirlers and alignment[C]//Proceedings of the ASME Turbo Expo 2013: Turbine Technical Conference and Exposition. 2013. doi: 10.1115/GT2013-94280
    [39]
    KAO Y H, TAMBE S B, JENG S M. Aerodynamics study of a linearly-arranged 5-swirler array[C]//Proceedings of the ASME Turbo Expo 2014: Turbine Technical Conference and Exposition. 2014. doi: 10.1115/GT2014-25094
    [40]
    HUO W Y, LIN Y Z, ZHANG C, et al. Effect of boundary conditions on downstream vorticity from counter-rotating swirlers[J]. Chinese Journal of Aeronautics, 2015, 28(1): 34-43. doi: 10.1016/j.cja.2014.12.014
    [41]
    FAN X J, LIU C X, XU G, et al. Experimental investigations of the spray structure and interactions between sectors of a double-swirl low-emission combustor[J]. Chinese Journal of Aeronautics, 2020, 33(2): 589-597. doi: 10.1016/j.cja.2019.09.009
    [42]
    GIRIDHARAN M G, MONGIA H C, JENG S-M. Swirl cup modeling-Part Ⅷ: Spray combustion in CFM-56 single cup flame tube[R]. AIAA 2003-0319, 2003. doi: 10.2514/6.2003-319
    [43]
    MONGIA H C, GORE J P, GRINSTEIN F F, et al. Combustion research needs for helping development of next-generation advanced combustors[R]. AIAA 2001-3583, 2001.
    [44]
    COLBY J A, MENON S, JAGODA J. Spray and emission characteristics near lean blow out in a counter-swirl stabilized gas turbine combustor[C]//Proceedings of the ASME Turbo Expo 2006: Power for Land, Sea, and Air. 2008. doi: 10.1115/GT2006-90974
    [45]
    DRISCOLL J F, TEMME J. Role of swirl in flame stabilization[R]. AIAA 2011-108, 2011.
    [46]
    FOUST M, THOMSEN D, STICKLES R, et al. Development of the GE aviation low emissions TAPS combustor for next generation aircraft engines[R]. AIAA 2012-936, 2012. doi: 10.2514/6.2012-936
    [47]
    LAZIK W, DOERR T, BAKE S, et al. Development of Lean-burn low-NOx combustion technology at rolls-Royce Deutschland[C]// Proceedings of the ASME Turbo Expo 2008: Power for Land, Sea, and Air. 2009. doi: 10.1115/GT2008-51115
    [48]
    MEIER U, FREITAG S, HEINZE J, et al. Characterisation of lean burn module air blast pilot injector with laser techniques[C]//Proceedings of the ASME Turbo Expo 2013: Turbine Technical Conference and Exposition. 2013.
    [49]
    吴浩玮, 陈浩, 刘存喜, 等. 预燃级内级旋流对燃烧室点/熄火性能的影响[J]. 燃烧科学与技术, 2017, 23(6): 560-566. doi: 10.11715/rskxjs.R201611016

    WU H W, CHEN H, LIU C X, et al. Effect of pilot-inner-staged swirl on ignition and blowout performance of combustor[J]. Journal of Combustion Science and Technology, 2017, 23(6): 560-566. doi: 10.11715/rskxjs.R201611016
    [50]
    LIU C X, LIU F Q, YANG J H, et al. Experimental investigation of spray and combustion performances of a fuel-staged low emission combustor: effects of main swirl angle[J]. Journal of Engineering for Gas Turbines and Power, 2017, 139(12): 121502. doi: 10.1115/1.4037451
    [51]
    YANG J H, LIU C X, LIU F Q, et al. Experimental and numerical study of the effect of main stage stratifier length on lean blow-out performance for a stratified partially premixed injector[J]. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2018, 232(7): 812-825. doi: 10.1177/0957650918758227
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(30)

    Article Metrics

    Article views (658) PDF downloads(88) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return