Volume 34 Issue 3
Jun.  2020
Turn off MathJax
Article Contents
LI Weihao, LI Weibin, YI Xian, et al. A correction method of icing testing scaling law with dynamic effects[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(3): 97-103. doi: 10.11729/syltlx20190166
Citation: LI Weihao, LI Weibin, YI Xian, et al. A correction method of icing testing scaling law with dynamic effects[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(3): 97-103. doi: 10.11729/syltlx20190166

A correction method of icing testing scaling law with dynamic effects

doi: 10.11729/syltlx20190166
  • Received Date: 2019-12-09
  • Rev Recd Date: 2020-01-05
  • Publish Date: 2020-06-25
  • The icing scaling law is an important theoretical method for converting flight conditions into test conditions. But existing icing scaling laws are mostly based on small droplets, which can cause large errors when applied to scaling transformations of large droplets. In response to this situation, research on icing scaling law considering the dynamics of droplets was carried out. Firstly, based on the ONERA scaling laws, the scaling parameters of the droplet deformation/breakup and splash were incorporated, and the modified icing scaling law was proposed. Secondly, based on these two scaling laws, the numerical simulation method was used to calculate the collection coefficient before and after the correction. The validity of the correction method was verified. Finally, the variation of the test parameters obtained by the two correction methods with the size reduction ratio was analyzed. The application of the scaling law in the icing test was given. The results show that the proposed method improves the coincidence of the local collection coefficient and reduces the average error of the collection coefficient and the impact limit. In addition, the scaling test parameters are within the design range of the icing wind tunnel. These correction methods can provide guidance for scaling transformations in supercooled large droplets ice wind tunnel test.
  • loading
  • [1]
    王建涛, 易贤, 肖中云, 等. ARJ21-700飞机冰脱落数值模拟[J].空气动力学学报, 2013, 31(4):430-436. http://d.old.wanfangdata.com.cn/Periodical/kqdlxxb201304004

    WANG J T, YI X, XIAO Z Y, et al. Numerical simulation of ice shedding from ARJ21-700[J]. Acta Aerodynamica Sinica, 2013, 31(4):430-436. http://d.old.wanfangdata.com.cn/Periodical/kqdlxxb201304004
    [2]
    高郭池, 丁丽, 李保良, 等.气动除冰类飞机结冰风洞试验适航审定技术[J].实验流体力学, 2019, 33(2):85-94. http://www.syltlx.com/CN/abstract/abstract11174.shtml

    GAO G C, DING L, LI B L, et al. Airworthiness certification technology about icing wind tunnel test for pneumatic de-icing aircraft[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(2):85-94. http://www.syltlx.com/CN/abstract/abstract11174.shtml
    [3]
    RUFF G. Verification and application of the icing scaling equations[R]. AIAA 1986-481, 1986.
    [4]
    KIND R J. Scaling of icing tests:a review of recent progress[J]. AIAA Journal, 2003, 41(8):1421-1428. doi: 10.2514-2.2120/
    [5]
    ANDERSON D N, TSAO J C. Overview of icing physics relevant to scaling[R]. SAE Technical Paper 2003-01-2130, 2003.
    [6]
    VILLEDIEU P, TRONTIN P, GUFFOND D, et al. SLD Lagrangian modeling and capability assessment in the frame of ONERA 3D icing suite[R]. AIAA-2012-3132, 2012.
    [7]
    ANDERSON D N. A preliminary study of ice-accretion scaling for SLD conditions[R]. AIAA-2002-0521, 2002.
    [8]
    马军林, 肖京平, 王桥, 等.飞机结冰相似准则研究进展[J].飞行力学, 2019, 37(4):1-7. http://d.old.wanfangdata.com.cn/Periodical/fxlx201904001

    MA J L, XIAO J P, WANG Q, et al. Advances in the study of aircraft icing similarity criteria[J]. Flight Dynamics, 2019, 37(4):1-7. http://d.old.wanfangdata.com.cn/Periodical/fxlx201904001
    [9]
    ANDERSON D N, FEO A. Ice-accretion scaling using water-film thickness parameters[R]. AIAA-2002-0522, 2002.
    [10]
    ANDERSON D N, TSAO J C. Additional results of ice-accretion scaling at SLD conditions[R]. AIAA-2003-390, 2003.
    [11]
    TSAO J C. Additional results of glaze icing scaling in SLD conditions[R]. AIAA-2016-3278, 2016.
    [12]
    周志宏, 易贤, 桂业伟, 等.考虑水滴动力学效应的结冰试验相似准则[J].实验流体力学, 2016, 30(2):20-25. http://www.syltlx.com/CN/abstract/abstract10912.shtml

    ZHOU Z H, YI X, GUI Y W, et al. Icing scaling law with the dynamic effects of water droplets[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(2):20-25. http://www.syltlx.com/CN/abstract/abstract10912.shtml
    [13]
    施红, 王均毅, 陈佳敏, 等.过冷大水滴条件下结冰相似准则[J].航空动力学报, 2019, 34(5):1101-1110. http://d.old.wanfangdata.com.cn/Periodical/hkdlxb201905017

    SHI H, WANG J Y, CHEN J M, et al. Icing scaling law at supercooled large droplet conditions[J]. Journal of Aerospace Power, 2019, 34(5):1101-1110. http://d.old.wanfangdata.com.cn/Periodical/hkdlxb201905017
    [14]
    易贤.飞机积冰的数值计算与积冰试验相似准则研究[D].四川绵阳: 中国空气动力研究与发展中心, 2007. http://cdmd.cnki.com.cn/Article/CDMD-90113-2007189443.htm

    YI X. Numerical computation of aircraft icing and study on icing test scaling law[D]. Mianyang Sichuan: China Aerodynamics Research and Development Center, 2007. http://cdmd.cnki.com.cn/Article/CDMD-90113-2007189443.htm
    [15]
    李维浩, 易贤, 李伟斌, 等.过冷大水滴变形与破碎的影响因素[J].航空学报, 2018, 39(12):81-89. http://d.old.wanfangdata.com.cn/Periodical/hkxb201812007

    LI W H, YI X, LI W B, et al. Influence factors on deformation and breakup of supercooled large droplets[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(12):81-89. http://d.old.wanfangdata.com.cn/Periodical/hkxb201812007
    [16]
    LI W H, YI X, LI W B, et al. Influences of Multi-factors on SLD Splashing Characteristics[C]//Proc of 2018 Asia-Pacific Interna-tional Symposium on Aerospace Technology. 2018.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(5)

    Article Metrics

    Article views (200) PDF downloads(7) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return