Volume 34 Issue 2
Apr.  2020
Turn off MathJax
Article Contents
YAO Zhaohui, ZHANG Jingxian, HAO Pengfei. Effect of surface micro/nano-structure on gas-water interface stability and flow drag reduction[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(2): 73-79. doi: 10.11729/syltlx20190161
Citation: YAO Zhaohui, ZHANG Jingxian, HAO Pengfei. Effect of surface micro/nano-structure on gas-water interface stability and flow drag reduction[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(2): 73-79. doi: 10.11729/syltlx20190161

Effect of surface micro/nano-structure on gas-water interface stability and flow drag reduction

doi: 10.11729/syltlx20190161
  • Received Date: 2018-12-16
  • Rev Recd Date: 2020-01-03
  • Publish Date: 2020-04-25
  • The pressure-flow measurement method and flow visualization are used to study the drag reduction effect of 6 types of super-hydrophobic surfaces with different micro/nano-structure dimensions and the influence of the surface microstructure shape on the gas-water interface stability. The experimental results show that the various superhydrophobic surfaces have a certain drag reduction under laminar flow and turbulent flow conditions. At the same solid area fraction, the smaller the microstructure spacing is, the better the drag reduction effect is. The maximum drag reduction rate, which is (38.6±4.5)%, is achieved on the micro/nano hierarchical structure surface with the smallest structural spacing. The visualization experiment also found that the drag reduction rate is related to the microstructure level, microstructure size, channel flow pattern and microstructure morphology, which all have certain influence on the gas-water interface stability. The hierarchical micro/nano-structure can significantly improve the drag reduction, because the addition of the nano-secondary structure reduces the solid area fraction of the surface and improves the stability of the gas-water interface. In addition, a microchannel surface with doubly reentrant structures (umbrella structure), even though made of wettable material, can capture and sustain the air-water interface, thereby achieving superhydrophobic performance.
  • loading
  • [1]
    RASTEGARI A, AKHAVAN R. The common mechanism of turbulent skin-friction drag reduction with superhydrophobic longitudinal microgrooves and riblets[J]. Journal of Fluid Mechanics, 2018, 838:68-104. doi: 10.1017/jfm.2017.865
    [2]
    RAAYAI-ARDAKANI S, MCKINLEY G H. Drag reduction using wrinkled surfaces in high Reynolds number laminar boundary layer flows[J]. Physics of Fluids, 2017, 29(9):093605. doi: 10.1063/1.4995566
    [3]
    ROTHSTEIN J P. Slip on superhydrophobic surfaces[J]. Annual Review of Fluid Mechanics, 2010, 42(42):89-109. http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_0808.1393
    [4]
    HEMEDA A A, GAD-EL-HAK M, TAFRESHI H V. Effects of hierarchical features on longevity of submerged superhydrophobic surfaces with parallel grooves[J]. Physics of Fluids, 2014, 26(8):082103. doi: 10.1063/1.4891363
    [5]
    吕鹏宇, 薛亚辉, 段慧玲.超疏水材料表面液气界面的稳定性及演化规律[J].力学进展, 2016, 46(1):179-225. http://d.old.wanfangdata.com.cn/Periodical/lxjz201601004

    LYU P Y, XUE Y H, DUAN H L. Stability and evolution of liquid-gas interfaces on superhydrophobic surfaces[J]. Advances in Mechanics, 2016, 46(1):179-225. http://d.old.wanfangdata.com.cn/Periodical/lxjz201601004
    [6]
    LEE C, KIM C J. Maximizing the giant liquid slip on superhydrophobic microstructures by nanostructuring their sidewalls[J]. Langmuir, 2009, 25(21):12812-12818. doi: 10.1021/la901824d
    [7]
    JONES P R, HAO X Q, CRUZ-CHU E R, et al. Sustaining dry surfaces under water[J]. Scientific Reports, 2015, 5(1):12311. doi: 10.1038/srep12311
    [8]
    TUTEJA A, CHOI W, MABRY J M, et al. Robust omniphobic surfaces[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(47):18200-18205. doi: 10.1073/pnas.0804872105
    [9]
    LIU T L, KIM C J. Turning a surface superrepellent even to completelywetting liquids[J]. Science, 2014, 346(6213):1096-1100. doi: 10.1126/science.1254787
    [10]
    OU J, PEROT B, ROTHSTEIN J P. Laminar drag reduction in microchannels using ultrahydrophobic surfaces[J]. Physics of Fluids, 2004, 16(12):4635-4643. doi: 10.1063/1.1812011
    [11]
    JOSEPH P, COTTIN-BIZONNE C, BENOIT J M, et al. Slippage of water past superhydrophobic carbon nanotube forests in microchannels[J]. Physical Review Letters, 2006, 97(15):156104. doi: 10.1103/PhysRevLett.97.156104
    [12]
    CHOI C H, ULMANELLA U, KIM J, et al. Effective slip and friction reduction in nanograted superhydrophobic microchannels[J]. Physics of Fluids, 2006, 18(8):087105. doi: 10.1063/1.2337669
    [13]
    BYUN D, KIM J, KO H S, et al. Direct measurement of slip flows in superhydrophobic microchannels with transverse grooves[J]. Physics of Fluids, 2008, 20(11):113601. doi: 10.1063/1.3026609
    [14]
    HAO P F, WONG C, YAO Z H, et al. Laminar drag reduction in hydrophobic microchannels[J]. Chemical Engineering & Technology, 2009, 32(6):912-918. http://www.ecs.umass.edu/mie/faculty/rothstein/pub_files/PhysFluids2004v16p4635_4643.pdf
    [15]
    WOOLFORD B, PRINCE J, MAYNES D, et al. Particle image velocimetry characterization of turbulent channel flow with rib patterned superhydrophobic walls[J]. Physics of Fluids, 2009, 21(8):085106. doi: 10.1063/1.3213607
    [16]
    DANIELLO R J, WATERHOUSE N E, ROTHSTEIN J P. Drag reduction in turbulent flows over superhydrophobic surfaces[J]. Physics of Fluids, 2009, 21(8):085103. doi: 10.1063/1.3207885
    [17]
    SU Y W, JI B H, HUANG Y G, et al. Nature's design of hierarchical superhydrophobic surfaces of a water strider for low adhesion and low-energy dissipation[J]. Langmuir, 2010, 26(24):18926-18937. doi: 10.1021/la103442b
    [18]
    BHUSHAN B, KOCH K, JUNG Y C. Biomimetic hierarchical structure for self-cleaning[J]. Applied Physics Letters, 2008, 93(9):093101. doi: 10.1063/1.2976635
    [19]
    SBRAGAGLIA M, PROSPERETTI A. A note on the effective slip properties for microchannel flows with ultrahydrophobic surfaces[J]. Physics of Fluids, 2007, 19(4):043603. doi: 10.1063/1.2716438
    [20]
    BLEVINS R D. Applied Fluid Dynamics Handbook[M]. New York:Van Nostrand Reinhold, 1984.
    [21]
    LU S, YAO Z H, HAO P F, et al. Drag reduction in ultra hydrophobic channels with micro-nano structured surfaces[J]. Science China-Physics Mechanics & Astronomy, 2010, 53(7):1298-1305. doi: 10.1007/s11433-010-4035-9
    [22]
    ZHANG J X, TIAN H P, YAO Z H, et al. Evolutions of hairpin vortexes over a super hydrophobic surface in turbulent boundary layer flow[J]. Physics of Fluids, 2016, 28(9):095106. doi: 10.1063/1.4962513
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(2)

    Article Metrics

    Article views (537) PDF downloads(43) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return