Volume 34 Issue 2
Apr.  2020
Turn off MathJax
Article Contents
QI Xiaojing, LI Xuejin. Research progress on mechanical and flow properties of blood cells in microcirculation using microfluidic devices[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(2): 1-10. doi: 10.11729/syltlx20190158
Citation: QI Xiaojing, LI Xuejin. Research progress on mechanical and flow properties of blood cells in microcirculation using microfluidic devices[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(2): 1-10. doi: 10.11729/syltlx20190158

Research progress on mechanical and flow properties of blood cells in microcirculation using microfluidic devices

doi: 10.11729/syltlx20190158
  • Received Date: 2019-11-28
  • Rev Recd Date: 2020-02-25
  • Publish Date: 2020-04-25
  • Microfluidics (or lab-on-a-chip) is an important technology suitable for a wide range of biomedical applications from single-cell analysis to point-of-care diagnosis. In this paper, we review recent advances in the applications of the microfluidic technology in the field of cell biology and biomechanics. We highlight examples of some successful applications of microfluidic devices in probing the mechanical and rheological characteristics of blood cells in healthy and diseased states at single-cell and multi-cell levels, and in investigating the cell migration and separation at the whole-cell population.
  • loading
  • [1]
    林炳承.微纳流控芯片实验室[M].北京:科学出版社, 2013.
    [2]
    STONE H A, STROOCK A D, AJDARI A. Engineering flows in small devices:Microfluidics toward a lab-on-a-chip[J]. Annu Rev Fluid Mech, 2004, 36:381-411. doi: 10.1146/annurev.fluid.36.050802.122124
    [3]
    秦建华, 刘婷姣, 林炳承.微流控芯片细胞实验室[J].色谱, 2009, 27(5):655-661. doi: 10.3321/j.issn:1000-8713.2009.05.017

    QIN J H, LIU T J, LIN B C. Cell laboratory on a microfluidic chip[J]. Chinese Journal of Chromatography, 2009, 27(5):655-661. doi: 10.3321/j.issn:1000-8713.2009.05.017
    [4]
    袁闱墨, 薛春东, 刘波, 等.一种高通量测量单细胞弹性模量的微流控芯片[J].北京生物医学工程, 2019, 38(5):450-456. doi: 10.3969/j.issn.1002-3208.2019.05.002

    YUAN W M, XUE C D, LIU B, et al. A high-throughput microluidic chip for trapping single cells and measuring single cells' elastic moduli[J]. Beijing Biomed Eng, 2019, 38(5):450-456. doi: 10.3969/j.issn.1002-3208.2019.05.002
    [5]
    SACKMANN E K, FULTON A L, BEEBE D J. The present and future role of microfluidics in biomedical research[J]. Nature, 2014, 507(7491):181-189. doi: 10.1038/nature13118
    [6]
    XI W, KONG F, YEO J C, et al. Soft tubular microfluidics for 2D and 3D applications[J]. P Natl Acad Sci USA, 2017, 114(40):10590-10595. doi: 10.1073/pnas.1712195114
    [7]
    SECOMB T W. Blood flow in the microcirculation[J]. Annu Rev Fluid Mech, 2017, 49:443-461. doi: 10.1146/annurev-fluid-010816-060302
    [8]
    CHIEN S. Red-cell deformability and its relevance to blood-flow[J]. Annu Rev Physiol, 1987, 49:177-192. doi: 10.1146/annurev.ph.49.030187.001141
    [9]
    SEBASTIAN B, DITTRICH P S. Microfluidics to mimic blood flow in health and disease[J]. Annu Rev Fluid Mech, 2018, 50:483-504. doi: 10.1146/annurev-fluid-010816-060246
    [10]
    LI J, LYKOTRAFITIS G, DAO M, et al. Cytoskeletal dynamics of human erythrocyte[J]. P Natl Acad Sci USA, 2007, 104(12):4937-4942. doi: 10.1073/pnas.0700257104
    [11]
    QUINN D J, PIVKIN I, WONG S Y, et al. Combined simulation and experimental study of large deformation of red blood cells in microfluidic systems[J]. Ann Biomed Eng, 2011, 39(3):1041-1050. doi: 10.1007/s10439-010-0232-y
    [12]
    ZHENG Y, NGUYEN J, WANG C, et al. Electrical measurement of red blood cell deformability on a microfluidic device[J]. Lab Chip, 2013, 13(16):3275-3283. doi: 10.1039/c3lc50427a
    [13]
    LI J P, SAPKOTA A, KIKUCHI D, et al. Red blood cells aggregability measurement of coagulating blood in extracorporeal circulation system with multiple-frequency electrical impedance spectroscopy[J]. Biosens Bioelectron, 2018, 112:79-85. doi: 10.1016/j.bios.2018.04.020
    [14]
    SHELBY J P, WHITE J, GANESAN K, et al. A microfluidic model for single-cell capillary obstruction by Plasmodium falciparum infected erythrocytes[J]. P Natl Acad Sci USA, 2003, 100(25):14618-14622. doi: 10.1073/pnas.2433968100
    [15]
    GUO Q, REILING S J, ROHRBACH P, et al. Microfluidic biomechanical assay for red blood cells parasitized by Plasmodium falciparum[J]. Lab Chip, 2012, 12(6):1143-1150. doi: 10.1039/c2lc20857a
    [16]
    GUO Q, DUFFY S P, MATTHEWS K, et al. Microfluidic analysis of red blood cell deformability[J]. J Biomech, 2014, 47(8):1767-1776. doi: 10.1016/j.jbiomech.2014.03.038
    [17]
    BOW H, PIVKIN I V, DIEZ-SILVA M, et al. A microfabricated deformability-based flow cytometer with application to malaria[J]. Lab Chip, 2011, 11(6):1065-1073. doi: 10.1039/c0lc00472c
    [18]
    DU E, DIEZ-SILVA M, KATO G J, et al. Kinetics of sickle cell biorheology and implications for painful vasoocclusive crisis[J]. P Natl Acad Sci USA, 2015, 112(5):1422-1427. doi: 10.1073/pnas.1424111112
    [19]
    PAULING L, ITANO H A, SINGER S J, et al. Sickle cell anemia, a molecular disease[J]. Science, 1949, 110(2865):543-548. doi: 10.1126/science.110.2865.543
    [20]
    BUNN H F. Mechanisms of disease-Pathogenesis and treatment of sickle cell disease[J]. New Engl J Med, 1997, 337(11):762-769. doi: 10.1056/NEJM199709113371107
    [21]
    LI X, DU E, DAO M, et al. Patient-specific modeling of individual sickle cell behavior under transient hypoxia[J]. Plos Comput Biol, 2017, 13(3):e1005426. doi: 10.1371/journal.pcbi.1005426
    [22]
    PAPAGEORGIOU D P, ABIDI S Z, CHANG H Y, et al. Simultaneous polymerization and adhesion under hypoxia in sickle cell disease[J]. P Natl Acad Sci USA, 2018, 115(38):9473-9478. doi: 10.1073/pnas.1807405115
    [23]
    DENG Y X, PAPAGEORGIOU D P, CHANG H Y, et al. Quantifying shear-induced deformation and detachment of individual adherent sickle red blood cells[J]. Biophys J, 2019, 116(2):360-371. doi: 10.1016/j.bpj.2018.12.008
    [24]
    QIU Y Z, AHN B, SAKURAI Y, et al. Microvasculature-on-a-chip for the long-term study of endothelial barrier dysfunction and microvascular obstruction in disease[J]. Nat Biomed Eng, 2018, 2(6):453-463. doi: 10.1038/s41551-018-0224-z
    [25]
    TSAI M, KITA A, LEACH J, et al. In vitro modeling of the microvascular occlusion and thrombosis that occur in hematologic diseases using microfluidic technology[J]. J Clin Invest, 2012, 122(1):408-418. doi: 10.1172/JCI58753
    [26]
    YANG S, JI B Y, UNDAR A, et al. Microfluidic devices for continuous blood plasma separation and analysis during pediatric cardiopulmonary bypass procedures[J]. Asaio J, 2006, 52(6):698-704. doi: 10.1097/01.mat.0000249015.76446.40
    [27]
    MIELCZAREK W S, OBAJE E A, BACHMANN T T, et al. Microfluidic blood plasma separation for medical diagnostics:is it worth it?[J]. Lab Chip, 2016, 16(18):3441-3448. doi: 10.1039/C6LC00833J
    [28]
    LIU C, XUE C D, CHEN X D, et al. Size-based separation of particles and cells utilizing viscoelastic effects in straight microchannels[J]. Anal Chem, 2015, 87(12):6041-6048. doi: 10.1021/acs.analchem.5b00516
    [29]
    姚琳, 白亮, 吴亮其, 等.微流控芯片技术在细胞生物学研究中的应用进展[J].中国细胞生物学学报, 2011, 33(11):1254-1266. http://d.old.wanfangdata.com.cn/Periodical/txsj201606210

    YAO L, BAI L, WU L Q, et al. Recent applications of microfluidic technology in the field of cell biology[J]. Chin J Cell Biol, 2011, 33(11):1254-1266. http://d.old.wanfangdata.com.cn/Periodical/txsj201606210
    [30]
    KARABACAK N M, SPUHLER P S, FACHIN F, et al. Microfluidic, marker-free isolation of circulating tumor cells from blood samples[J]. Nat Protoc, 2014, 9(3):694-710. doi: 10.1038/nprot.2014.044
    [31]
    董建伟, 夏凌, 李攻科.循环肿瘤细胞富集技术研究进展[J].分析化学, 2018, 46(12):1851-1862. doi: 10.11895/j.issn.0253-3820.181515

    DONG J W, XIA L, LI G K. Progress in enrichment techniques of circulating tumor cells[J]. Chin J Anal Chem, 2018, 46(12):1851-1862. doi: 10.11895/j.issn.0253-3820.181515
    [32]
    LIU C, GUO J Y, TIAN F, et al. Field-free isolation of exosomes from extracellular vesicles by microfluidic viscoelastic flows[J]. ACS Nano, 2017, 11(7):6968-6976. doi: 10.1021/acsnano.7b02277
    [33]
    ZHANG X B, WU Z Q, WANG K, et al. Gravitational sedimentation induced blood de lamination for continuous plasma separation on a microfluidics chip[J]. Anal Chem, 2012, 84(8):3780-3786. doi: 10.1021/ac3003616
    [34]
    HOU H W, BHAGAT A A S, CHONG A G L, et al. Deformability based cell margination-A simple microfluidic design for malaria-infected erythrocyte separation[J]. Lab Chip, 2010, 10(19):2605-2613. doi: 10.1039/c003873c
    [35]
    BHAGAT A A S, HOU H W, LI L D, et al. Pinched flow coupled shear-modulated inertial microfluidics for high-throughput rare blood cell separation[J]. Lab Chip, 2011, 11(11):1870-1878. doi: 10.1039/c0lc00633e
    [36]
    PETCHAKUP C, TAY H M, LI H K H, et al. Integrated inertial-impedance cytometry for rapid label-free leukocyte isolation and profiling of neutrophil extracellular traps (NETs)[J]. Lab Chip, 2019, 19(10):1736-1746. doi: 10.1039/C9LC00250B
    [37]
    HOU H W, WU L D, AMADOR-MUNOZ D P, et al. Broad spectrum immunomodulation using biomimetic blood cell margination for sepsis therapy[J]. Lab Chip, 2016, 16(4):688-699. doi: 10.1039/C5LC01110H
    [38]
    TENG Y, PANG M S, HUANG J Y, et al. Mechanical characterization of cancer cells during TGF-beta 1-induced epithelial-mesenchymal transition using an electrodeformation-based microchip[J]. Sensor Actuat B-Chem, 2017, 240:158-167. doi: 10.1016/j.snb.2016.08.104
    [39]
    TENG Y, ZHU K, XIONG C Y, et al. Electrodeformation-based biomechanical chip for quantifying global viscoelasticity of cancer cells regulated by cell cycle[J]. Anal Chem, 2018, 90(14):8370-8378. doi: 10.1021/acs.analchem.8b00584
    [40]
    NASCIMENTO E M, NOGUEIRA N, SILVA T, et al. Dielectrophoretic sorting on a microfabricated flow cytometer:Label free separation of Babesia bovis infected erythrocytes[J]. Bioelectrochemistry, 2008, 73(2):123-128. doi: 10.1016/j.bioelechem.2008.04.018
    [41]
    ZHAO W J, CHENG R, LIM S H, et al. Biocompatible and label-free separation of cancer cells from cell culture lines from white blood cells in ferrofluids[J]. Lab Chip, 2017, 17(13):2243-2255. doi: 10.1039/C7LC00327G
    [42]
    TASOGLU S, KHOORY J A, TEKIN H C, et al. Levitational image cytometry with temporal resolution[J]. Adv Mater, 2015, 27(26):3901-3908. doi: 10.1002/adma.201405660
    [43]
    COLLINS D J, KHOO B L, MA Z, et al. Selective particle and cell capture in a continuous flow using micro-vortex acoustic streaming[J]. Lab Chip, 2017, 17(10):1769-17777. doi: 10.1039/C7LC00215G
    [44]
    DING X Y, PENG Z L, LIN S C S, et al. Cell separation using tilted-angle standing surface acoustic waves[J]. P Natl Acad Sci USA, 2014, 111(36):12992-12997. doi: 10.1073/pnas.1413325111
    [45]
    LI P, MAO Z M, PENG Z L, et al. Acoustic separation of circulating tumor cells[J]. P Natl Acad Sci USA, 2015, 112(16):4970-4975. doi: 10.1073/pnas.1504484112
    [46]
    DU E, DAO M, SURESH S. Quantitative biomechanics of healthy and diseased human red blood cells using dielectrophoresis in a microfluidic system[J]. Extreme Mech Lett, 2014, 1:35-41. doi: 10.1016/j.eml.2014.11.006
    [47]
    QIANG Y H, LIU J, DU E. Dynamic fatigue measurement of human erythrocytes using dielectrophoresis[J]. Acta Biomater, 2017, 57:352-362. doi: 10.1016/j.actbio.2017.05.037
    [48]
    QIANG Y H, LIU J, DAO M, et al. Mechanical fatigue of human red blood cells[J]. P Natl Acad Sci USA, 2019, 116(40):19828-19834. doi: 10.1073/pnas.1910336116
    [49]
    BARABINO G A, PLATT M O, KAUL D K. Sickle cell biomechanics[J]. Annu Rev Biomed Eng, 2010, 12:345-367. doi: 10.1146/annurev-bioeng-070909-105339
    [50]
    LI X J, DAO M, LYKOTRAFITIS G, et al. Biomechanics and biorheology of red blood cells in sickle cell anemia[J]. J Biomech, 2017, 50:34-41. doi: 10.1016/j.jbiomech.2016.11.022
    [51]
    JACOB H S. The defective red blood cell in hereditary spherocytosis[J]. Annu Rev Med, 1969, 20:41-46. doi: 10.1146/annurev.me.20.020169.000353
    [52]
    LI H, LU L, LI X J, et al. Mechanics of diseased red blood cells in human spleen and consequences for hereditary blood disorders[J]. P Natl Acad Sci USA, 2018, 115(38):9574-9579. doi: 10.1073/pnas.1806501115
    [53]
    林炳承, 罗勇, 刘婷姣, 等.器官芯片[M].北京:科学出版社, 2019.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article Metrics

    Article views (429) PDF downloads(53) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return