Volume 34 Issue 2
Apr.  2020
Turn off MathJax
Article Contents
SONG Chunlei, REN Yukun, HE Wenjun, et al. Experimental study on circulating filtration of micro particles based on metal rubber and dielectrophoretic effect[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(2): 39-45. doi: 10.11729/syltlx20190152
Citation: SONG Chunlei, REN Yukun, HE Wenjun, et al. Experimental study on circulating filtration of micro particles based on metal rubber and dielectrophoretic effect[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(2): 39-45. doi: 10.11729/syltlx20190152

Experimental study on circulating filtration of micro particles based on metal rubber and dielectrophoretic effect

doi: 10.11729/syltlx20190152
  • Received Date: 2019-11-12
  • Rev Recd Date: 2020-03-14
  • Publish Date: 2020-04-25
  • In order to improve the filtration capacity of the metal rubber sheet, the porous metal rubber sheet is combined with the dielectrophoresis, and the high-efficiency pumping function of the liquid metal droplet in the confined space is utilized to research the filtration performance of the metal rubber sheet on the 5 μm polystyrene microspheres. A pair of metal rubber sheets is parallelly embedded in the close-looped circulating microfluidics channel to achieve an AC field gradient for effective dielectrophoresis. The results show that it is difficult to realize the filtering function without applying an AC electric field as the aperture of the pores inside the metal rubber sheet is much larger than the diameter of latex beads. As long as the two pairs of electrodes are energized synergistically, the suspended colloids can be trapped by short-range dielectrophoresis force near the metal rubber sheets, which can significantly improve the filtering quality.
  • loading
  • [1]
    WANG S L, BAI H B, LU G H. The research progress and application expectation of metal rubber vibration isolator[C]//Proc of International Conference on Materials, Environmental and Biological Engineering. 2015.
    [2]
    国亚东, 夏宇宏, 陈照波, 等.金属橡胶过滤材料孔径分布特性研究[J].过滤与分离, 2008, 18(2):8-10. doi: 10.3969/j.issn.1005-8265.2008.02.003

    GUO Y D, XIA Y H, CHEN Z B, et al. Research on pore size distributions of metal rubber filtering materials[J]. Journal of Filtration & Separation, 2008, 18(2):8-10. doi: 10.3969/j.issn.1005-8265.2008.02.003
    [3]
    邹广平, 刘泽, 程贺章, 等.预紧量与振动量级对金属橡胶减振器振动特性影响研究[J].振动与冲击, 2015, 34(22):173-177, 191. http://d.old.wanfangdata.com.cn/Periodical/zdycj201522030

    ZOU G P, LIU Z, CHENG H Z, et al. Effects of preloading and vibration level on the vibration characteristics of metal rubber damper[J]. Journal of Vibration and Shock, 2015, 34(22):173-177, 191. http://d.old.wanfangdata.com.cn/Periodical/zdycj201522030
    [4]
    白鸿柏, 路纯红, 曹凤利, 等.金属橡胶调压阀流阻性能试验研究[J].机械科学与技术, 2013, 32(12):1864-1868. http://d.old.wanfangdata.com.cn/Periodical/jxkxyjs201312032

    BAI H B, LU C H, CAO F L, et al. Experimental study of flow resistance of a metal rubber pressure regulation valve[J]. Mechanical Science and Technology for Aerospace Engineering, 2013, 32(12):1864-1868. http://d.old.wanfangdata.com.cn/Periodical/jxkxyjs201312032
    [5]
    姜洪源, 国亚东, 陈照波, 等. 0Cr18Ni9Ti金属橡胶过滤材料最大孔径研究[J].稀有金属材料与工程, 2009, 38(12):2116-2120. doi: 10.3321/j.issn:1002-185X.2009.12.010

    JIANG H Y, GUO Y D, CHEN Z B, et al. Research on maximal pore size of 0Cr18Ni9Ti metal rubber filtering material[J]. Rare Metal Materials and Engineering, 2009, 38(12):2116-2120. doi: 10.3321/j.issn:1002-185X.2009.12.010
    [6]
    侯军芳, 白鸿柏, 刘英杰, 等.新型金属橡胶孔隙材料过滤机制与性能研究[J].润滑与密封, 2006(4):109-112. doi: 10.3969/j.issn.0254-0150.2006.04.037

    HOU J F, BAI H B, LIU Y J, et al. Research on filtration mechanism and performance of elastic and porous metal-rubber material[J]. Lubrication Engineering, 2006(4):109-112. doi: 10.3969/j.issn.0254-0150.2006.04.037
    [7]
    REN Y K, LIU W Y, JIA Y K, et al. Induced-charge electroosmotic trapping of particles[J]. Lab on a Chip, 2015, 15(10):2181-2191. doi: 10.1039/C5LC00058K
    [8]
    WU Y P, REN Y K, TAO Y, et al. Large-scale single particle and cell trapping based on rotating electric field induced-charge electroosmosis[J]. Analytical Chemistry, 2016, 88(23):11791-11798. doi: 10.1021/acs.analchem.6b03413
    [9]
    REN Y K, LIU W Y, LIU J W, et al. Particle rotational trapping on a floating electrode by rotating induced-charge electroosmosis[J]. Biomicrofluidics, 2016, 10(5):054103. doi: 10.1063/1.4962804
    [10]
    DEY R, SHAIK V A, CHAKRABORTY D, et al. AC electric field-induced trapping of microparticles in pinched microconfinements[J]. Langmuir, 2015, 31(21):5952-5961. doi: 10.1021/la504795m
    [11]
    CALERO V, GARCIA-SANCHEZ P, HONRADO C M F, et al. AC electrokinetic biased deterministic lateral displacement for tunable particle separation[J]. Lab on a Chip, 2019, 19(8):1386-1396. doi: 10.1039/C8LC01416G
    [12]
    URDANETA M, SMELA E. Multiple frequency dielectrophoresis[J]. Electrophoresis, 2007, 28(18):3145-3155. doi: 10.1002/elps.200600786
    [13]
    AROSIO P, MVLLER T, MAHADEVAN L, et al. Density-gradient-free microfluidic centrifugation for analytical and preparative separation of nanoparticles[J]. Nano Letters, 2014, 14(5):2365-2371. doi: 10.1021/nl404771g
    [14]
    COLLINS D J, MA Z C, HAN J Y, et al. Continuous micro-vortex-based nanoparticle manipulation via focused surface acoustic waves[J]. Lab on a Chip, 2016, 17(1):91-103. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f1d05131302d8450048343005160ab6f
    [15]
    IRANMANESH M, HULLIGER J. Magnetic separation:its application in mining, waste purification, medicine, biochemistry and chemistry[J]. Chemical Society Reviews, 2017, 46(19):5925-5934. doi: 10.1039/C7CS00230K
    [16]
    DASH S, MOHANTY S. Dielectrophoretic separation of micron and submicron particles:a review[J]. Electrophoresis, 2014, 35(18):2656-2672. doi: 10.1002/elps.201400084
    [17]
    HUNT T P, WESTERVELT R M. Dielectrophoresis tweezers for single cell manipulation[J]. Biomed Microdevices, 2006, 8(3):227-230. doi: 10.1007/s10544-006-8170-z
    [18]
    SONG H, ROSANO J M, WANG Y, et al. Continuous-flow sorting of stem cells and differentiation products based on dielectrophoresis[J]. Lab on a Chip, 2015, 15(5):1320-1328. doi: 10.1039/C4LC01253D
    [19]
    Han S I, Kim H S, Han A. In-droplet cell concentration using dielectrophoresis[J]. Biosensors and Bioelectronics, 2017, 97:41-45. doi: 10.1016/j.bios.2017.05.036
    [20]
    TANG S Y, KHOSHMANESH K, SIVAN V, et al. Liquid metal enabled pump[J]. Proceedings of the National Academy of Sciences, 2014, 111(9):3304-3309. doi: 10.1073/pnas.1319878111
    [21]
    WANG M F, JIN M J, JIN X J, et al. Modeling of movement of liquid metal droplets driven by an electric field[J]. Physical Chemistry Chemical Physics, 2017, 19(28):18505-18513. doi: 10.1039/C7CP02798B
    [22]
    KHOSHMANESH K, TANG S Y, ZHU J Y, et al. Liquid metal enabled microfluidics[J]. Lab on a Chip, 2017, 17(6):974-993. doi: 10.1039/C7LC00046D
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)

    Article Metrics

    Article views (273) PDF downloads(15) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return