Volume 34 Issue 2
Apr.  2020
Turn off MathJax
Article Contents
MU Kai, SI Ting. Experimental method and process control of capillary flow focusing[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(2): 46-56. doi: 10.11729/syltlx20190146
Citation: MU Kai, SI Ting. Experimental method and process control of capillary flow focusing[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(2): 46-56. doi: 10.11729/syltlx20190146

Experimental method and process control of capillary flow focusing

doi: 10.11729/syltlx20190146
  • Received Date: 2019-10-31
  • Rev Recd Date: 2019-12-10
  • Publish Date: 2020-04-25
  • Capillary flow focusing as one typical kind of capillary flows is able to produce droplets and capsules at micro-scales, offering promising advantages in applications. This work reviews the experimental methods of capillary flow focusing based on the 'air-injecting' and 'air-sucking' devices, and presents the complete platform for studying the fluid cone-jet structures. Moreover, the method of adding external actuations on the flow focusing device to manipulate the breakup of liquid jets is illustrated. The flow visualization methods to capture the interface evolutions of the compound fluid cones and jets are introduced. It is found that the geometric parameters and the external flow parameters significantly affect the morphologies and instabilities of the fluid cone, and would further affect the diameters, perturbation wavelengths and interface coupling of the coaxial liquid jets. The lens effect of the outer interface on the coaxial jets could cause distortion of the inner jet and droplets, and a modified method was developed to remove the distortion based on the law of refraction. For the jet breakup upon external actuation, the relationship between the jet breakup length and the excitation amplitude was studied. The effects of the actuation frequency on the diameters and monodispersity of resultant droplets were studied.
  • loading
  • [1]
    GAÑÁN-CALVO A M, MONTANERO J M, MARTÍN-BANDERAS L, et al. Building functional materials for health care and pharmacy from microfluidic principles and flow focusing[J]. Advanced Drug Delivery Reviews, 2013, 65(11-12):1447-1469. doi: 10.1016/j.addr.2013.08.003
    [2]
    BARRERO A, LOSCERTALES I G. Micro-and nanoparticles via capillary flows[J]. Annual Review of Fluid Mechanics, 2007, 39:89-106. doi: 10.1146/annurev.fluid.39.050905.110245
    [3]
    MONTANERO J M, GAÑÁN-CALVO A M. Dripping, jetting and tip streaming[R]. arXiv: 1909.02073.2019.
    [4]
    司廷, 李广滨, 尹协振.流动聚焦及射流不稳定性[J].力学进展, 2017, 47:201706. doi: 10.6052/1000-0992-16-026

    SI T, LI G B, YIN X Z. Flow focusing and jet instability[J]. Advances in Mechanics, 2017, 47:201706. doi: 10.6052/1000-0992-16-026
    [5]
    司廷.流动聚焦的实验和理论研究[D].合肥: 中国科学技术大学, 2009. http://cdmd.cnki.com.cn/Article/CDMD-10358-2009110996.htm
    [6]
    李广滨.复合流动聚焦的实验和理论研究[D].合肥: 中国科学技术大学, 2016. http://d.wanfangdata.com.cn/Thesis/Y3021236
    [7]
    穆恺.液驱流动聚焦中界面失稳及耦合研究[D].合肥: 中国科学技术大学, 2018. https://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CDFD&dbname=CDFD&filename=1018096839.nh
    [8]
    SI T, FENG H X, LUO X S, et al. Formation of steady compound cone-jet modes and multilayered droplets in a tri-axial capillary flow focusing device[J]. Microfluid and Nanofluidics, 2015, 18:967-977. doi: 10.1007/s10404-014-1486-8
    [9]
    SI T, YIN C S, GAO P, et al. Steady cone-jet mode in compound-fluidic electro-flow focusing for fabricating multicompart-ment microcapsules[J]. Applied Physics Letters, 2016, 108:021601. doi: 10.1063/1.4939632
    [10]
    WU Q, YANG C Y, LIU G L, et al. Multiplex coaxial flow focusing for producing multicompartment janus microcapsules with tunable material compositions and structural characteristics[J]. Lab on a Chip, 2017, 17(18):3168-3175. doi: 10.1039/C7LC00769H
    [11]
    WU Q, YANG C Y, YANG J X et al. Photopolymerization of complex emulsions with irregular shapes fabricated by multiplex coaxial flow focusing[J]. Applied Physics Letters, 2018, 112(7):071601. doi: 10.1063/1.5018207
    [12]
    GAÑÁN-CALVO A M. Generation of steady liquid microthreads and micron-sized monodisperse sprays in gas streams[J]. Physical Review Letters, 1998, 80(2):285. doi: 10.1103/PhysRevLett.80.285
    [13]
    ROSELL-LLOMPART J, GAÑÁN-CALVO A M. Turbulence in pneumatic flow focusing and flow blurring regimes[J]. Physical Review E, 2008, 77(2):036321. https://ui.adsabs.harvard.edu/abs/2008PhRvE..77c6321R/abstract
    [14]
    HERRADA M A, GAÑÁN-CALVO A M, OJEDA-MONGE A, et al. Liquid flow focused by a gas:jetting, dripping, and recirculation[J]. Physical Review E, 2008, 78(2):036323. http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_0804.3138
    [15]
    GAÑÁN-CALVO A M, BARRERO A. A novel pneumatic technique to generate steady capillary microjets[J]. Journal of Aerosol Science, 1999, 30(1):117-125. doi: 10.1016/S0021-8502(98)00029-9
    [16]
    SI T, LI F, YIN X Y, et al. Modes in flow focusing and instability of coaxial liquid-gas jets[J]. Journal of Fluid Mechanics, 2009, 629:1-23. doi: 10.1017/S0022112009006211
    [17]
    SI T, LI F, YIN X Y, et al. Spatial instability of coflowing liquid-gas jets in capillary flow focusing[J]. Physics of Fluids, 2010, 22(11):112105. doi: 10.1063/1.3490066
    [18]
    VEGA E J, MONTANERO J M, HERRADA M A, et al. Global and local instability of flow focusing:The influence of the geometry[J]. Physics of Fluids, 2010, 22:064105. doi: 10.1063/1.3450321
    [19]
    GAÑÁN-CALVO A M, MONTANERO J M. Revision of capillary cone-jet physics:electrospray and flow focusing[J]. Physical Review E, 2009, 79(2):066305. https://www.ncbi.nlm.nih.gov/pubmed/19658592
    [20]
    GAÑÁN-CALVO A M, GORDILLO J M. Perfectly monodisperse microbubbling by capillary flow focusing[J]. Physical Review Letters, 2002, 87(1):274501. doi: 10.1103-PhysRevLett.87.1/
    [21]
    GAÑÁN-CALVO A M. Perfectly monodisperse microbubbling by capillary flow focusing:An alternate physical description and universal scaling[J]. Physical Review E, 2004, 69(2):027301. doi: 10.1103/PhysRevE.69.027301
    [22]
    GAÑÁN-CALVO A M, RIESCO-CHUECA P. Jetting-dripping transition of a liquid jet in a lower viscosity co-flowing immiscible liquid:the minimum flow rate in flow focusing[J]. Journal of Fluid Mechanics, 2006, 553:75-84. doi: 10.1017/S0022112006009013
    [23]
    MU K, DING H, SI T. Instability analysis of the cone-jet flow in liquid-driven flow focusing[J]. Microfluidics and Nanofluidics, 2018, 22(12):138. doi: 10.1007/s10404-018-2158-x
    [24]
    MU K, SI T, DING H. Nonlinear dynamics and manipulation of dripping in capillary flow focusing[J]. Science China Physics, Mechanics and Astronomy, 2019, 62(12):124713. doi: 10.1007/s11433-019-9444-8
    [25]
    ANNA S L, BONTOUX N, STONE H A. Formation of diepersions using "flow-focusing" in microchannels[J]. Applied Physics Letters, 2003, 82(3):364-366. doi: 10.1063/1.1537519
    [26]
    刘赵淼, 杨洋.几何构型对流动聚焦生成微液滴的影响[J].力学学报, 2016, 48(4):867-876. http://d.old.wanfangdata.com.cn/Periodical/lxxb201604013

    LIU Z M, YANG Y. Influence of geometry configurations on the microdroplets in flow focusing microfluidics[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(4):867-876. http://d.old.wanfangdata.com.cn/Periodical/lxxb201604013
    [27]
    ZHU P A, KONG T T, KANG Z X, et al. Tip-multi-breaking in capillary microfluidic devices[J]. Scientific Reports, 2015, 5:11102. doi: 10.1038/srep11102
    [28]
    CORDERO M L, GALLAIRE F, BAROUD C N. Quantitative analysis of the dripping and jetting regimes in co-flowing capillary jets[J]. Physics of Fluids, 2010, 23(9):094111. http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_1011.2428
    [29]
    李战华, 郑旭.微纳米尺度流动实验研究的问题与进展[J].实验流体力学. 2014, 28(3):1-11. http://journal16.magtechjournal.com/Jweb_jefm/CN/abstract/abstract10728.shtml

    LI Z H, ZHENG X. The problems and progress in the experimental study of micro/nano-scaleflow[J]. Journal of Experiments in Fluid Mechnics, 2014, 28(3):1-11. http://journal16.magtechjournal.com/Jweb_jefm/CN/abstract/abstract10728.shtml
    [30]
    ZHU P A, WANG L Q. Passive and active droplet generation with microfluidics:a review[J]. Lab on a Chip, 2016, 17(1):34-75. https://www.ncbi.nlm.nih.gov/pubmed/27841886
    [31]
    ANNA S L. Droplets and bubbles in microfluidic devices[J]. Annual Review of Fluid Mechanics, 2016, 48(1):285-309. doi: 10.1146/annurev-fluid-122414-034425
    [32]
    陈晓东, 胡国庆.微流控器件中的多相流动[J].力学进展, 2015, 45:201503. doi: 10.6052/1000-0992-14-063

    CHEN X D, HU G Q. Multiphase flow in microfluidic devices[J]. Advances in Mechanics, 2015, 45:201503. doi: 10.6052/1000-0992-14-063
    [33]
    刘赵淼, 杨洋, 杜宇, 等.微流控液滴技术及其应用的研究进展[J].分析化学, 2017, 45(2):282-296. http://d.old.wanfangdata.com.cn/Periodical/fxhx201702020

    LIU Z M, YANG Y, DU Y, et al. Advances in droplet-based microfluidics technology and its applications[J]. Chinese Journal of Analytical Chemistry, 2017, 45(2):282-296. http://d.old.wanfangdata.com.cn/Periodical/fxhx201702020
    [34]
    杨超宇, 吴强, 徐晓嵘, 等.制备复合液滴的微尺度流动方法[J].气体物理, 2018, 3(4):13-23. http://d.old.wanfangdata.com.cn/Periodical/qtwl201804002

    YANG C Y, WU Q, XU R X, et al. Advacens on microfluidic methods for producing compound droplets[J]. Physics of gases, 2018, 3(4):13-23. http://d.old.wanfangdata.com.cn/Periodical/qtwl201804002
    [35]
    MARTÍN-BANDERAS L, FLORES-MOSQUERA M, RIESCO-CHUECA P. Flow focusing:a versatile technology to produce size-controlled and specific morphology microparticles[J]. Small, 2005, 1(7):688-692. doi: 10.1002/smll.200500087
    [36]
    MARTIN-BANDERAS L, Rodríguez-Gil A, CEBOLLA A, et al. Towards high-throughput production of uniformly encoded microparticles[J]. Advanced Materials, 2006, 18(5):559-564. doi: 10.1002/adma.200501976
    [37]
    GAÑÁN-CALVO A M, GONZÁLEZ-PRIETO R, RIESCO-CHUECA P, et al. Focusing capillary jets close to the continuum limit[J]. Nature Physics, 2007, 3(10):737-742. doi: 10.1038/nphys710
    [38]
    HERRADA M A, MONTANERO J M, FERRERA C, et al. Analysis of the dripping-jetting transition in compound capillary jets[J]. Journal of Fluid Mechanics, 2010, 649:523-536. doi: 10.1017/S0022112010000443
    [39]
    MU K, DING H, SI T. Experimental and numerical investigations on interface coupling of coaxial liquid jets in co-flow-focusing[J]. Physics of Fluid, 2020, 32(4):042103. doi: 10.1063/5.0002102
    [40]
    UTADA A S, LORENCEAU E, LINK D R, et al. Monodisperse double emulsions generated from a microcapillary device[J]. Science, 2005, 308(5721):537-541. doi: 10.1126/science.1109164
    [41]
    NIE Z H, XU S Q, SEO M S, et al. Polymer particles with various shapes and morphologies produced in continuous microfluidic reactors[J]. Journal of the American Chemical Society, 2005, 127(22):8058-8063. doi: 10.1021/ja042494w
    [42]
    PANG Y, DU Y, WANG J, et al. Generation of single/double Janus emulsion droplets in co-flowing microtube[J]. International Journal of Multiphase Flow, 2019, 113:199-207. doi: 10.1016/j.ijmultiphaseflow.2019.01.011
    [43]
    SI T, LI G B, WU Q, et al. Optical droplet vaporization of nanoparticle-loaded stimuli-responsive microbubbles[J]. Applied Physics Letters, 2016, 108(12):111109. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8525e16bc0e016d8b7cf2cda3293e538
    [44]
    ZHU Z Q, SI T, XU R X. Microencapsulation of indocyanine green for potential applications in image-guided drug delivery[J]. Lab on a Chip, 2015, 15(3):646-649. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=91b4155a096314815bbd6abe05020d5a
    [45]
    XU J S, YUAN S, TIAN J L, et al. Ultrasound mediated delivery of oxygen and lll12 loaded stimuli responsive microdroplets for the treatment of hypoxic cancer cells[J]. Scientific Reports, 2017, 7:44908. doi: 10.1038/srep44908
    [46]
    ZHU Z Q, WU Q, HAN S Y, et al. Rapid production of single-and multi-compartment polymeric microcapsules in a facile 3D microfluidic process for magnetic separation and synergistic delivery[J]. Sensor and Actuator B:Chemical, 2018, 275:190-198. doi: 10.1016/j.snb.2018.08.044
    [47]
    ZHU P A, TANG X, WANG L Q. Droplet generation in co-flow microfluidic channels with vibration[J]. Microfluidics and Nanofluidics, 2016, 20(3):47. doi: 10.1007/s10404-016-1717-2
    [48]
    SAURET A, SHUM H C. Forced generation of simple and double emulsions in all-aqueous systems[J]. Applied Physics Letters, 2012, 100(15):154106. doi: 10.1063/1.3702434
    [49]
    SAURET A, SPANDAGOS C, SHUM H C. Fluctuation-induced dynamics of multiphase liquid jets with ultra-low interfacial tension[J]. Lab on a Chip, 2012, 12(18):3380-3386. doi: 10.1039/c2lc40524e
    [50]
    SHUM H C, VARNELL J, WEITZ D A. Microfluidic fabrication of water-in-water (w/w) jets and emulsions[J]. Biomicrofluidic, 2012, 6(1):012808. doi: 10.1063/1.3670365
    [51]
    YANG C Y, QIAO R, MU K, et al. Manipulation of jet breakup length and droplet size in axisymmetric flow focusing upon actuation[J]. Physics of Fluids, 2019, 31(9):091702. doi: 10.1063/1.5122761
    [52]
    MU K, SI T, LI E Q, et al. Numerical study on droplet generation in axisymmetric flow focusing upon actuation[J]. Physics of Fluids, 2018, 30:012111. doi: 10.1063/1.5009601
    [53]
    MONTANERO J M, REBOLLO-MUÑOZ N, HERRADA M A, et al. Global stability of the focusing effect of fluid jet flows[J]. Physical Review E, 2011, 83(2):036309. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=5253e594787b9ec7d2554459d280829e
    [54]
    LI G B, LUO X S, SI T, et al. Temporal instability of coflowing liquid-gas jets under an electric field[J]. Physics of Fluids, 2014, 26(5):054101. doi: 10.1063/1.4875109
    [55]
    GAÑÁN-CALVO A M, LÓPEZ-HERRERA J M, RIESCO-CHUECA P. The combination of electrospray and flow focusing[J]. Journal of Fluid Mechanics, 2006, 566:421-445. doi: 10.1017/S0022112006002102
    [56]
    EGGERS J, VILLERMAUX E. Physics of liquid jets[J]. Reports on Progress in Physics, 2008, 71(3):036601. doi: 10.1088/0034-4885/71/3/036601
    [57]
    LIN S P, REITZ R D. Drop and spray formation from a liquid jet[J]. Annual Review of Fluid Mechanics, 1998, 30(1):85-105. doi: 10.1146/annurev.fluid.30.1.85
    [58]
    LIN S P. Breakup of liquid sheets and jets[M]. Cambridge:Cambridge University Press, 2003.
    [59]
    LASHERAS J C, HOPFINGER E J. Liquid jet instability and atomization in a coaxial gas stream[J]. Annual Review of Fluid Mechanics, 2000, 32:275-308. doi: 10.1146/annurev.fluid.32.1.275
    [60]
    李帅兵, 司廷.射流破碎的不稳定性分析方法[J].空气动力学学报, 2019, 37(3):356-372. doi: 10.7638/kqdlxxb-2018.0153

    LI S B, SI T. Advances on linear instability analysis method of jet breakup[J]. Acta Aerodynamica Sinica, 2019, 37(3):356-372. doi: 10.7638/kqdlxxb-2018.0153
    [61]
    司廷, 李广滨, 罗喜胜, 等.同轴流动聚焦中射流不稳定性研究[J].气体物理, 2017, 2(1):30-38. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qtwl201701004

    SI T, LI G B, LUO X S, et al. Theoretical investigation on flow instability of liquid jets in co-flow focusing[J]. Physics of Gases, 2017, 2(1):30-38. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qtwl201701004
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)

    Article Metrics

    Article views (375) PDF downloads(32) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return