Volume 34 Issue 2
Apr.  2020
Turn off MathJax
Article Contents
ZHOU Sijia, WANG Haoli, BAO Fubing. Experimental study on microrheological properties of polyethylene oxide solution based on single particle tracking method[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(2): 89-98. doi: 10.11729/syltlx20190143
Citation: ZHOU Sijia, WANG Haoli, BAO Fubing. Experimental study on microrheological properties of polyethylene oxide solution based on single particle tracking method[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(2): 89-98. doi: 10.11729/syltlx20190143

Experimental study on microrheological properties of polyethylene oxide solution based on single particle tracking method

doi: 10.11729/syltlx20190143
  • Received Date: 2019-10-30
  • Rev Recd Date: 2020-01-21
  • Publish Date: 2020-04-25
  • The microrheological properties of polyethylene oxide (PEO) solution under different temperatures and different concentrations were studied based on the single particle tracking (SPT) method in this paper. Based on the generalized Stokes-Einstein relationship and the viscoelastic theory of complex fluid, the microrheological properties of PEO dilute solution with concentration of 0.4 wt%~1.0 wt% at 25℃, 35℃ and 45℃ were measured and analyzed by the particle tracking technique. The study results show that the restriction of Brownian motion of the probe particles increases with the increase of the solution concentration. The Brownian motion is most restricted under the concentration of 1.0 wt% and the temperature of 25℃. The solved results of the viscoelastic modulus show that PEO solution is a complex fluid with dominant viscous modulus and weak elastic modulus under the experimental conditions. The viscoelastic modulus of the solution increases with the increase of the solution concentration under the same temperature. Both the elastic modulus (G'(ω)) and the viscous modulus (G"(ω)) show the decreasing trend with the increase of the temperature, and the decreasing rate of the elastic modulus is larger than that of the viscous modulus. The analysis of MSD standard deviation indicates that the measurement errors show the increasing trend with the increase of the tracking time in the microrheological experiment based on SPT method.
  • loading
  • [1]
    FURST E M, SQUIRES T M. Microrheology[M]. Oxford:Oxford University Press, 2017.
    [2]
    王振东, 姜楠.软物质漫谈[J].力学与实践, 2014, 36(2):249-252. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lxysj201402025
    [3]
    MACKINTOSH F C, SCHMIDT C F. Microrheology[J]. Current Opinion in Colloid & Interface Science, 1999, 4(4):300-307. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ023307599/
    [4]
    WAIGH T A. Microrheology of complex fluids[J]. Reports on Progress in Physics, 2005, 68(3):685-742. doi: 10.1088/0034-4885/68/3/R04
    [5]
    MANSEL B W, KEEN S, PATTY P J, et al. A practical review of microrheological techniques[M]//Rheology-New Concepts, Applications and Methods. Croatia:Intech, 2013.
    [6]
    YANG N, LYU R H, JIA J J, et al. Application of microrheology in food science[J]. Annual Review of Food Science and Technology, 2017, 8(1):493-521. doi: 10.1146/annurev-food-030216-025859
    [7]
    MASON T G, WEITZ D A. Optical measurements of frequency-dependent linear viscoelastic moduli of complex fluids[J]. Physical Review Letters, 1995, 74(7):1250-1253. doi: 10.1103/PhysRevLett.74.1250
    [8]
    GITTES F, SCHNURR B, OLMSTED P D, et al. Microscopic viscoelasticity:shear moduli of soft materials determined from thermal fluctuations[J]. Physical Review Letters, 1997, 79(17):3286-3289. doi: 10.1103/PhysRevLett.79.3286
    [9]
    KIMURA Y. Microrheology of soft matter[J]. Journal of the Physical Society of Japan, 2009, 78(4):1005. http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_1312.4369
    [10]
    LARSEN T H, FURST E M. Microrheology of the liquid-solid transition during gelation[J]. Physical Review Letters, 2008, 100(14):146001. doi: 10.1103/PhysRevLett.100.146001
    [11]
    GAMBINI C, ABOU B, PONTON A, et al. Micro-and macrorheology of jellyfish extracellular matrix[J]. Biophysical Journal, 2012, 102(1):1-9. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c9c6745797409b769694b6a845f03ed5
    [12]
    ABDALA A A, AMIN S, VAN ZANTEN J H, et al. Tracer microrheology study of a hydrophobically modified comblike associative polymer[J]. Langmuir, 2015, 31(13):3944-3951. doi: 10.1021/la504904n
    [13]
    XU J Y, CHANG T S, INGLETT G E, et al. Micro-heterogeneity and micro-rheological properties of high-viscosity oat β-glucansolutions[J]. Food Chemistry, 2007, 103(4):1192-1198. doi: 10.1016/j.foodchem.2006.10.024
    [14]
    COHEN I, WEIHS D. Rheology and microrheology of natural and reduced-calorie Israeli honeys as a model for high-viscosity Newtonian liquids[J]. Journal of Food Engineering, 2010, 100(2):366-371. doi: 10.1016/j.jfoodeng.2010.04.023
    [15]
    MOSCHAKIS T, MURRAY B S, DICKINSON E. Particle tracking using confocal microscopy to probe the microrheology in a phase-separating emulsion containing nonadsorbing polysaccharide[J]. Langmuir, 2006, 22(10):4710-4719. doi: 10.1021/la0533258
    [16]
    MOSCHAKIS T, MURRAY B S, DICKINSON E. On the kinetics of acid sodium caseinate gelation using particle tracking to probe the microrheology[J]. Journal of Colloid and Interface Science, 2010, 345(2):278-285. doi: 10.1016/j.jcis.2010.02.005
    [17]
    MOSCHAKIS T, LAZARIDOU A, BILIADERIS C G. Using particle tracking to probe the local dynamics of barley β-glucan solutions upon gelation[J]. Journal of Colloid and Interface Science, 2012, 375(1):50-59. doi: 10.1016/j.jcis.2012.02.048
    [18]
    MOSCHAKIS T, LAZARIDOU A, BILIADERIS C G. A micro-and macro-scale approach to probe the dynamics of sol-gel transition in cereal β-glucan solutions varying in molecular characteristics[J]. Food Hydrocolloids, 2014, 42(1):81-91. https://www.researchgate.net/publication/267047027_A_micro-_and_macro-scale_approach_to_probe_the_dynamics_of_sol-gel_transition_in_cereal_b-glucan_solutions_varying_in_molecular_characteristics
    [19]
    NATH P, MANGAL R, KOHLE F, et al. Dynamics of nanoparticles in entangled polymer solutions[J]. Langmuir, 2018, 34(1):241-249. doi: 10.1021/acs.langmuir.7b03418
    [20]
    VAN ZANTEN J H, AMIN S, ABDALA A A. Brownian motion of colloidal spheres in aqueous PEO solutions[J]. Macromolecules, 2004, 37(10):3874-3880. doi: 10.1021/ma035250p
    [21]
    KUBO R. The fluctutation-dissipation theorem[J]. Reports on Progress in Physics, 1966, 29:255-284. doi: 10.1088/0034-4885/29/1/306
    [22]
    ZWANZIG R, BIXON M. Hydrodynamic theory of the velocity correlation function[J]. Physical Review A, 1970, 2(5):2005-2012. doi: 10.1103/PhysRevA.2.2005
    [23]
    DOIM. Soft matter physics[M]. New York:Oxford University Press, 2013.
    [24]
    MASON T G, GANESAN K, VAN ZANTEN J H, et al. Particle tracking microrheology of complex fluids[J]. Physical Review Letters, 1997, 79(17):3282-3285. doi: 10.1103/PhysRevLett.79.3282
    [25]
    MASON T G, GANG H, WEITZ D A. Diffusing-wave-spectroscopy measurements of viscoelasticity of complex fluids[J]. Journal of the Optical Society of America A:Optics Image Science and Vision, 1997, 14(1):139-149. doi: 10.1364/JOSAA.14.000139
    [26]
    崔凤霞, 郭春梅, 王开林, 等.聚氧化乙烯(PEO)的合成及应用[J].精细石油化工, 1999, 16(6):41-44. http://d.old.wanfangdata.com.cn/Periodical/shjsyyy200802005
    [27]
    MASON T G. Estimating the viscoelastic moduli of complex fluids using the generalized Stokes-Einstein equation[J]. Rheologica Acta, 2000, 39(4):371-378. doi: 10.1007/s003970000094
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(5)

    Article Metrics

    Article views (237) PDF downloads(13) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return