Volume 34 Issue 2
Apr.  2020
Turn off MathJax
Article Contents
WANG Xiang, PANG Yan, SHEN Feng, et al. Study on behaviors of droplets and particles within microchannels[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(2): 25-38. doi: 10.11729/syltlx20190137
Citation: WANG Xiang, PANG Yan, SHEN Feng, et al. Study on behaviors of droplets and particles within microchannels[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(2): 25-38. doi: 10.11729/syltlx20190137

Study on behaviors of droplets and particles within microchannels

doi: 10.11729/syltlx20190137
  • Received Date: 2019-10-22
  • Rev Recd Date: 2020-01-06
  • Publish Date: 2020-04-25
  • The requirements for miniaturization and integration of new detection devices as well as the demands for interdisciplinary manipulation platform by current scientific researches and engineering applications prompt the rapid development of microfluidics. Droplet and particle are two important targets that are manipulated by microfluidics, which usually works at the laminar flow domain. Nonlinear factors are introduced into microscale flow by scale effect and interface effect, which are influenced by multiple parameters including the channel geometry and flow condition. In order to understand the complex flow phenomena, physical mechanisms should be studied from the fundamental perspective of hydrodynamics. Related work of our group on behaviors of droplets and particles over recent years is summarized. By analyzing the variation of characteristic parameters of droplet or particle, distinct flow regimes and corresponding critical conditions can be specified. Key control parameters dominating the flow can be confirmed and theoretical models can be constructed to pursue the manipulation methods of different behaviors. This study can provide references for the improvement of the theoretical system of complex flow at microscale and the related engineering applications.
  • loading
  • [1]
    林炳承.微纳流控芯片实验室[M].北京:科学出版社, 2013.
    [2]
    李战华, 吴健康, 胡国庆, 等.微流控芯片中的流体流动[M].北京:科学出版社, 2012.

    LI Z H, WU J K, HU G Q, et al. Fluid flow in microfluidic chips[M]. Beijing:Science Press, 2012.
    [3]
    陈晓东, 胡国庆.微流控器件中的多相流动[J].力学进展, 2015, 45:201503. doi: 10.6052/1000-0992-14-063

    CHEN X D, HU G Q. Multiphase flow in microfluidic devices[J]. Advances in Mechanics, 2015, 45:201503. doi: 10.6052/1000-0992-14-063
    [4]
    司廷, 李广滨, 尹协振.流动聚焦及射流不稳定性[J].力学进展, 2017, 47:201706. doi: 10.6052/1000-0992-16-026

    SI T, LI G B, YIN X Z. Flow focusing and jet instability[J]. Advances in Mechanics, 2017, 47:201706. doi: 10.6052/1000-0992-16-026
    [5]
    LIN X, BAO F, TU C, et al. Dynamics of bubble formation in highly viscous liquid in co-flowing microfluidic device[J]. Microfluidics and Nanofluidics, 2019, 23(5):74. doi: 10.1007/s10404-019-2221-2
    [6]
    PANG Y, KIM H, LIU Z, et al. A soft microchannel decreases polydispersity of droplet generation[J]. Lab on a Chip, 2014, 14(20):4029-4034. doi: 10.1039/C4LC00871E
    [7]
    PANG Y, DU Y, WANG J, et al. Generation of single/double Janus emulsion droplets in co-flowing microtube[J]. International Journal of Multiphase Flow, 2019, 113:199-207. doi: 10.1016/j.ijmultiphaseflow.2019.01.011
    [8]
    LIU Z M, LI M, PANG Y, et al. Flow characteristics inside droplets moving in a curved microchannel with rectangular section[J]. Physics of Fluids, 2019, 31(2):022004. doi: 10.1063/1.5080373
    [9]
    FUERSTMAN M J, GARSTECKI P, WHITESIDES G M. Coding/decoding and reversibility of droplet trains in microfluidic networks[J]. Science, 2007, 315(5813):828. doi: 10.1126/science.1134514
    [10]
    PANG Y, WANG X, LIU Z M. Study of droplet flow in a T-shape microchannel with bottom wall fluctuation[J]. Acta Mechanica Sinica, 2018, 34(4):632-643. doi: 10.1007/s10409-018-0750-7
    [11]
    LIU Z, ZHANG L, PANG Y, et al. Micro-PIV investigation of the internal flow transitions inside droplets traveling in a rectangular microchannel[J]. Microfluidics and Nanofluidics, 2017, 21(12):180. doi: 10.1007/s10404-017-2019-z
    [12]
    BAROUD C N, GALLAIRE F, DANGLA R. Dynamics of microfluidic droplets[J]. Lab on a Chip, 2010, 10(16):2032-2045. doi: 10.1039/c001191f
    [13]
    SEEMANN R, BRINKMANN M, PFOHL T, et al. Droplet based microfluidics[J]. Rep Prog Phys, 2012, 75(1):016601. doi: 10.1088/0034-4885/75/1/016601
    [14]
    LIU Z, ZHAO J, PANG Y, et al. Generation of droplets in the T-junction with a constriction microchannel[J]. Microfluidics and Nanofluidics, 2018, 22(11):124. doi: 10.1007/s10404-018-2144-3
    [15]
    MUINELO-ROMAY L, VIEITO M, ABALO A, et al. Evaluation of circulating tumor cells and related events as prognostic factors and surrogate biomarkers in advanced NSCLC patients receiving first-line systemic treatment[J]. Cancers, 2014, 6(1):153-165. doi: 10.3390/cancers6010153
    [16]
    LIU C, HU G, JIANG X, et al. Inertial focusing of spherical particles in rectangular microchannels over a wide range of Reynolds numbers[J]. Lab on a Chip, 2015, 15(4):1168-1177. doi: 10.1039/C4LC01216J
    [17]
    REN Y, LIU X, LIU W, et al. Flexible particle flow-focusing in microchannel driven by droplet-directed induced-charge electroosmosis[J]. Electrophoresis, 2018, 39(4):597-607. doi: 10.1002/elps.201700305
    [18]
    TONER M, IRIMIA D. Blood-on-a-chip[J]. Annu Rev Biomed Eng, 2005, 7:77-103. doi: 10.1146/annurev.bioeng.7.011205.135108
    [19]
    DI CARLO D. Inertial microfluidics[J]. Lab on a Chip, 2009, 9(21):3038-3046. doi: 10.1039/b912547g
    [20]
    WANG J, YU D. Asymmetry of flow fields and asymmetric breakup of a droplet[J]. Microfluidics and Nanofluidics, 2014, 18(4):709-715. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e4f199d28ea9c8d33235fba14ba66132
    [21]
    WANG X, LIU Z M, PANG Y. Droplet breakup in an asymmetric bifurcation with two angled branches[J]. Chemical Engineering Science, 2018, 188:11-17. doi: 10.1016/j.ces.2018.05.003
    [22]
    WANG X, LIU Z M, PANG Y. Breakup dynamics of droplets in an asymmetric bifurcation by μPIV and theoretical investigations[J]. Chemical Engineering Science, 2019, 197:258-268. doi: 10.1016/j.ces.2018.12.030
    [23]
    LINK D R, ANNA S L, WEITZ D A, et al. Geometrically mediated breakup of drops in microfluidic devices[J]. Phys Rev Lett, 2004, 92(5):054503. doi: 10.1103/PhysRevLett.92.054503
    [24]
    LESHANSKY A M, PISMEN L M. Breakup of drops in a microfluidic T junction[J]. Physics of Fluids, 2009, 21(2):023303. doi: 10.1063/1.3078515
    [25]
    FU T, MA Y, FUNFSCHILLING D, et al. Dynamics of bubble breakup in a microfluidic T-junction divergence[J]. Chemical Engineering Science, 2011, 66(18):4184-4195. doi: 10.1016/j.ces.2011.06.003
    [26]
    CHEN Y, DENG Z. Hydrodynamics of a droplet passing through a microfluidic T-junction[J]. Journal of Fluid Mechanics, 2017, 819:401-434. doi: 10.1017/jfm.2017.181
    [27]
    CHEN B, LI G, WANG W, et al. 3D numerical simulation of droplet passive breakup in a micro-channel T-junction using the Volume-of-Fluid method[J]. Applied Thermal Engineering, 2015, 88:94-101. doi: 10.1016/j.applthermaleng.2014.11.084
    [28]
    JULLIEN M C, TSANG MUI CHING M J, COHEN C, et al. Droplet breakup in microfluidic T-junctions at small capillary numbers[J]. Physics of Fluids, 2009, 21(7):072001. doi: 10.1063/1.3170983
    [29]
    SAMIE M, SALARI A, SHAFII M B. Breakup of microdroplets in asymmetric T junctions[J]. Phys Rev E Stat Nonlin Soft Matter Phys, 2013, 87(5):053003. doi: 10.1103/PhysRevE.87.053003
    [30]
    YAMADA M, DOIS, MAENAKA H, et al. Hydrodynamic control of droplet division in bifurcating microchannel and its application to particle synthesis[J]. J Colloid Interface Sci, 2008, 321(2):401-407. doi: 10.1016/j.jcis.2008.01.036
    [31]
    VAN STEIJN V, KLEIJN C R, KREUTZER M T. Flows around confined bubbles and their importance in triggering pinch-off[J]. Phys Rev Lett, 2009, 103(21):214501. doi: 10.1103/PhysRevLett.103.214501
    [32]
    SUN X, ZHU C, FU T, et al. Dynamics of droplet breakup and formation of satellite droplets in a microfluidic T-junction[J]. Chemical Engineering Science, 2018, 188:158-169. doi: 10.1016/j.ces.2018.05.027
    [33]
    CHESTERS A K. The modelling of coalescence processes in fluid-liquid dispersions:a review of current understanding[J]. Chemical Engineering Research and Design, 1991, 69:259-270.
    [34]
    SHEN F, LI Y, LI MU Z, et al. Advances in Micro-droplets coalescence using microfluidics[J]. Chinese Journal of Analytical Chemistry, 2015, 43(12):1942-1954. doi: 10.1016/S1872-2040(15)60886-6
    [35]
    GAI Y, KHOR J W, TANG S K Y. Confinement and viscosity ratio effect on droplet break-up in a concentrated emulsion flowing through a narrow constriction[J]. Lab on a Chip, 2016, 16(16):3058-3064. doi: 10.1039/C6LC00478D
    [36]
    LIU Z M, WANG X, CAO R T, et al. Droplet coalescence at microchannel intersection chambers with different shapes[J]. Soft Matter, 2016, 12(26):5797-5807. doi: 10.1039/C6SM01158F
    [37]
    LIU Z M, CAO R T, PANG Y, et al. The influence of channel intersection angle on droplets coalescence process[J]. Experiments in Fluids, 2015, 56(2):24. doi: 10.1007/s00348-015-1901-2
    [38]
    CHRISTOPHER G F, BERGSTEIN J, END N B, et al. Coalescence and splitting of confined droplets at microfluidic junctions[J]. Lab on a Chip, 2009, 9(8):1102-1109. doi: 10.1039/b813062k
    [39]
    WANG K, LU Y, YANG L, et al. Microdroplet coalescences at microchannel junctions with different collision angles[J]. AIChE Journal, 2013, 59(2):643-649. doi: 10.1002/aic.13825
    [40]
    WANG X, LIU Z, PANG Y. Collision characteristics of droplet pairs with the presence of arriving distance differences[J]. Journal of Industrial and Engineering Chemistry, 2019, 69:225-232. doi: 10.1016/j.jiec.2018.09.017
    [41]
    RISTENPART W D, BIRD J C, BELMONTE A, et al. Non-coalescence of oppositely charged drops[J]. Nature, 2009, 461(7262):377-380. doi: 10.1038/nature08294
    [42]
    BORRELL M, YOON Y, LEAL L G. Experimental analysis of the coalescence process via head-on collisions in a time-dependent flow[J]. Physics of Fluids, 2004, 16(11):3945-3954. doi: 10.1063/1.1795291
    [43]
    SHEN F, LI Y, LIU Z, et al. Study of flow behaviors of droplet merging and splitting in microchannels using Micro-PIV measurement[J]. Microfluidics and Nanofluidics, 2017, 21(4):66. doi: 10.1007/s10404-017-1902-y
    [44]
    WANG X, LIU Z, PANG Y. Concentration gradient generation methods based on microfluidic systems[J]. RSC Advances, 2017, 7(48):29966-29984. doi: 10.1039/C7RA04494A
    [45]
    SHEN F, LI Y, WANG G, et al. Mechanisms of rectangular groove-induced multiple-microdroplet coalescences[J]. Acta Mechanica Sinica, 2017, 33(3):585-594. doi: 10.1007/s10409-016-0623-x
    [46]
    OH K W, LEE K, AHN B, et al. Design of pressure-driven microfluidic networks using electric circuit analogy[J]. Lab on a Chip, 2012, 12(3):515-545. doi: 10.1039/C2LC20799K
    [47]
    BRUUS H. Theoretical Microfluidics[M]. New York:Oxford University Press, 2008.
    [48]
    BITHI S S, VANAPALLI S A. Collective dynamics of non-coalescing and coalescing droplets in microfluidic parking networks[J]. Soft Matter, 2015, 11(25):5122-5132. doi: 10.1039/C5SM01077B
    [49]
    ZHANG L, LIU Z, PANG Y, et al. Trapping a moving droplet train by bubble guidance in microfluidic networks[J]. RSC Advances, 2018, 8(16):8787-8794. doi: 10.1039/C7RA13507F
    [50]
    BITHI S S, WANG W S, SUN M, et al. Coalescing drops in microfluidic parking networks:A multifunctional platform for drop-based microfluidics[J]. Biomicrofluidics, 2014, 8(3):034118. doi: 10.1063/1.4885079
    [51]
    WEN H, YU Y, ZHU G, et al. A droplet microchip with substance exchange capability for the developmental study of C. elegans[J]. Lab on a Chip, 2015, 15(8):1905-1911. doi: 10.1039/C4LC01377H
    [52]
    BITHI S S, NEKOUEI M, VANAPALLI S A. Bistability in the hydrodynamic resistance of a drop trapped at a microcavity junction[J]. Microfluidics and Nanofluidics, 2017, 21(11):164. doi: 10.1007/s10404-017-2006-4
    [53]
    PARTHIBAN P, KHAN S A. Bistability in droplet traffic at asymmetric microfluidic junctions[J]. Biomicrofluidics, 2013, 7(4):44123. doi: 10.1063/1.4819276
    [54]
    JIANG M, QIAN S, LIU Z. Fully resolved simulation of single-particle dynamics in a microcavity[J]. Microfluidics and Nanofluidics, 2018, 22(12):144. doi: 10.1007/s10404-018-2166-x
    [55]
    SHEN F, XIAO P, LIU Z. Microparticle image velocimetry (μPIV) study of microcavity flow at low Reynolds number[J]. Microfluidics and Nanofluidics, 2015, 19(2):403-417. doi: 10.1007/s10404-015-1575-3
    [56]
    SHEN F, XU M, ZHOU B, et al. Effects of geometry factors on microvortices evolution in confined square microcavities[J]. Microfluidics and Nanofluidics, 2018, 22(4):36. doi: 10.1007/s10404-018-2056-2
    [57]
    HUR S C, MACH A J, DI CARLO D. High-throughput size-based rare cell enrichment using microscale vortices[J]. Biomicrofluidics, 2011, 5(2):22206. doi: 10.1063/1.3576780
    [58]
    SHEN F, XUE S, XU M, et al. Experimental study of single-particle trapping mechanisms into microcavities using microfluidics[J]. Physics of Fluids, 2019, 31(4):042002. doi: 10.1063/1.5081918
    [59]
    HADDADI H, DI CARLO D. Inertial flow of a dilute suspension over cavities in a microchannel[J]. Journal of Fluid Mechanics, 2016, 811:436-467. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=435554999de0a62bd593baf5d6296ede
    [60]
    SHEN F, XU M, WANG Z, et al. Single-particle trapping, orbiting, and rotating in a microcavity using microfluidics[J]. Applied Physics Express, 2017, 10(9):097301. doi: 10.7567/APEX.10.097301
    [61]
    SHEN F, XUE S, ZHOU B, et al. Evolution of single-particle recirculating orbits within a hydrodynamic microvortex[J]. Journal of Micromechanics and Microengineering, 2018, 28(8):085018. doi: 10.1088/1361-6439/aac02d
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(19)

    Article Metrics

    Article views (543) PDF downloads(61) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return