Volume 34 Issue 4
Aug.  2020
Turn off MathJax
Article Contents
XIAO Heng, GU Yunsong, SUN Zhijun. Unsteady surface pressure measurements of standard spinning missile model in supersonic flow[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(4): 62-67. doi: 10.11729/syltlx20190100
Citation: XIAO Heng, GU Yunsong, SUN Zhijun. Unsteady surface pressure measurements of standard spinning missile model in supersonic flow[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(4): 62-67. doi: 10.11729/syltlx20190100

Unsteady surface pressure measurements of standard spinning missile model in supersonic flow

doi: 10.11729/syltlx20190100
  • Received Date: 2019-08-05
  • Rev Recd Date: 2019-09-24
  • Publish Date: 2020-08-25
  • In order to obtain complex pressure changes of the spinning missile model, an embedded wireless pressure measurement system was designed, which can simultaneously acquire 8 pressure channels at a sampling frequency of 1 kHz. The absolute pressure measurement system has a range of 30 PSI and a static measurement error of less than 5/10 000. After connecting a 10 cm pressure measuring hose, the delay of the system is less than 1.16 ms, and the signal amplitude attenuation is less than 1%. By using the embedded wireless pressure measurement system, the model surface pressure test was carried out in a high-speed wind tunnel. The pressure in the critical area of the spinning missile model is measured and the dynamic characteristic of the surface pressure is obtained. The result shows that the unsteady pressure measurement technique proposed in this paper can synchronously measure the surface pressure of rotating model, which provides an effective unsteady surface pressure measurement method for wind tunnel test of rotating missile.
  • loading
  • [1]
    李惠芝, 成楚之.旋转导弹的气动布局[J].战术导弹技术, 1989(3):4-10. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000005071990
    [2]
    TISSERAND L E. Aerodynamics of a rolling airframe missile[J]. Aerodynamics of a Rolling Airframe Missile, 1981, 82(8):25-147. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=LrxG81aOYhQ3/7dgJNsO1GWm6hKAGE5ENdaCDjDQzLM=
    [3]
    DESPEYROUX A, HICKEY J P, DESAULNIER R, et al. Numerical analysis of static and dynamic performances of grid fin controlled missiles[J]. Journal of Spacecraft and Rockets, 2015, 52(4):1236-1252. doi: 10.2514/1.A33189
    [4]
    苗瑞生, 吴甲生.旋转弹空气动力学[J].力学进展, 1987, 17(14):479-487. http://www.cnki.com.cn/Article/CJFDTotal-LXJZ198704004.htm
    [5]
    FRESCONI F, GUIDOS B, CELMINS I, et al. Flight behavior of an asymmetric missile through advanced characterization techniques[J]. Journal of Spacecraft and Rockets, 2017, 54(1):266-277. doi: 10.2514/1.A33593
    [6]
    NYGAARD T A, MEAKIN R L. Aerodynamic analysis of a spinning missile with dithering canards[J]. Journal of Spacecraft and Rockets, 2004, 41(5):726-734. doi: 10.2514/1.13075
    [7]
    DESPIRITO J. CFD validation of interaction of fin trailing vortex with downstream control surface in high subsonic flow[R]. AIAA-2016-1546, 2016.
    [8]
    BLADES E L, MARCUM D L. Numerical simulation of a spinning missile with dithering canards using unstructured grids[J]. Journal of Spacecraft and Rockets, 2004, 41(2):248-256. doi: 10.2514/1.9197
    [9]
    SHENG C H, WANG X, ZHAO Q Y. Aerodynamic analysis of a spinning missile using a high-order unstructured-grid scheme[J]. Journal of Spacecraft and Rockets, 2010, 47(1):81-89. doi: 10.2514/1.42988
    [10]
    MILLER M. Wind tunnel measurements of the Magnus induced surface pressures on a spinning projectile in the transonic speed regime[R]. AIAA-1983-1838, 1983.
    [11]
    BLISS D B, WACHSPRESS D A, QUACKENBUSH T R. A new approach to the free wake problem for hovering rotors[C]//Proceedings of American Helicopter Society 41st Annual Forum. 1985.
    [12]
    KWON O J, HODGES D H, SANKAR L N. Stability of hingeless rotors in hover using three-dimensional unsteady aerodynamics[J]. Journal of the American Helicopter Society, 1991, 36(2):21-31. doi: 10.4050/JAHS.36.21
    [13]
    高丽敏, 吴亚楠, 胡小全, 等.基于光强的快速响应PSP动态测量技术及其应用[J].航空学报, 2014, 35(3):607-623. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hkxb201403002

    GAO L M, WU Y N, HU X Q, et al. Intensity-based fast response PSP technique and its applications[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(3):607-623. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hkxb201403002
    [14]
    高丽敏, 高杰, 王欢, 等. PSP技术在叶栅叶片表面压力测量中的应用[J].工程热物理学报, 2011, 32(3):411-414. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gcrwlxb201103013

    GAO L M, GAO J, WANG H, et al. Application of PSP technique to pressure measurement on cascade surface[J]. Journal of Engineering Thermophysics, 2011, 32(3):411-414. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gcrwlxb201103013
    [15]
    张永存, 陈柳生, 阎莉, 等.压敏涂料技术在风洞中的应用研究[J].实验流体力学, 2010, 24(1):74-78, 94. http://www.syltlx.com/CN/abstract/abstract9792.shtml

    ZHANG Y C, CHEN L S, YAN L, et al. Investigation and application of pressure sensitive paint technique in wind tunnel test[J]. Journal of Experiments in Fluid Mechanics, 2010, 24(1):74-78, 94. http://www.syltlx.com/CN/abstract/abstract9792.shtml
    [16]
    陈子龙, 熊兵, 黄明镜.基于PSP技术的压气机跨声叶栅表面压力场测量[J].燃气涡轮试验与研究, 2015, 28(4):57-62. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=rqwlsyyyj201504013

    CHENG Z L, XIONG B, HUANG M J. Transonic cascade pressure-field measurement based on PSP technique[J]. Gas Turbine Experiment and Research, 2015, 28(4):57-62. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=rqwlsyyyj201504013
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(16)  / Tables(2)

    Article Metrics

    Article views (282) PDF downloads(30) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return