Volume 34 Issue 4
Aug.  2020
Turn off MathJax
Article Contents
LAN Tian, KONG Lingzhen, CHEN Jiaqing, et al. Study on extraction method of liquid jet trajectory in low-speed air crossflow based on image processing[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(4): 94-101. doi: 10.11729/syltlx20190089
Citation: LAN Tian, KONG Lingzhen, CHEN Jiaqing, et al. Study on extraction method of liquid jet trajectory in low-speed air crossflow based on image processing[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(4): 94-101. doi: 10.11729/syltlx20190089

Study on extraction method of liquid jet trajectory in low-speed air crossflow based on image processing

doi: 10.11729/syltlx20190089
  • Received Date: 2019-07-04
  • Rev Recd Date: 2019-10-09
  • Publish Date: 2020-08-25
  • In order to study the trajectory characteristics and influencing factors of liquid jets injected into low-speed air crossflow under different working conditions, the liquid jet breakup image is attained by the high speed camera, and the extraction method of trajectory characteristics of liquid jets injected into air crossflow is proposed, combined with image processing technology. Firstly, histogram equalization is used to enhance the gray-scale original image. Secondly, the optimal histogram entropy method (KSW entropy method) and traditional genetic algorithm are employed to achieve threshold segmentation. Finally, the Sobel operator and convex hull algorithm are served for extracting the jet edge contour, and obtaining the data point set of the jet trajectory. The results of trajectory extraction and fitting of typical jet breakup modes under different working conditions show that the proposed method can effectively extract the characteristics of the liquid jet fracture trajectory, and adapt to the track extraction of different liquid jet breakup modes under the action of low speed air crossflow. Besides, the empirical formula of jet breakup obtained by nonlinear fitting can predict the jet trajectory well.
  • loading
  • [1]
    吴里银, 张扣立, 李晨阳, 等.超声速气流中液体横向射流空间振荡分布建模[J].实验流体力学, 2018, 32(4):20-30. http://www.syltlx.com/CN/abstract/abstract11115.shtml

    WU L Y, ZHANG K L, LI C Y, et al. Model for three-dimensional distribution of liquid fuel in supersonic crossflows[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(4):20-30. http://www.syltlx.com/CN/abstract/abstract11115.shtml
    [2]
    ESLAMIAN M, AMIGHI A, ASHGRIZ N. Atomization of liquid jet in high-pressure and high-temperature subsonic crossflow[J]. AIAA Journal, 2014, 52(7):1374-1385. doi: 10.2514/1.J052548
    [3]
    BHRAN A, SHOAIB A, HAMED M. Application of compact mixer technique for khalda gas dehydration plant[J]. International Journal of Engineering and Technical Research, 2016, 4(4):40-47. https://www.erpublication.org/published_paper/IJETR041580.pdf
    [4]
    XIAO F, WANG Z G, SUN M B, et al. Large eddy simulation of liquid jet primary breakup in supersonic air crossflow[J]. International Journal of Multiphase Flow, 2016, 87:229-240. doi: 10.1016/j.ijmultiphaseflow.2016.08.008
    [5]
    BROUMAND M, BIROUK M. Liquid jet in a subsonic gaseous crossflow:Recent progress and remaining challenges[J]. Progress in Energy and Combustion Science, 2016, 57:1-29. doi: 10.1016/j.pecs.2016.08.003
    [6]
    林宇震, 李林, 张弛, 等.液体射流喷入横向气流混合特性研究进展[J].航空学报, 2014, 35(1):46-57. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hkxb201401004

    LIN Y Z, LI L, ZHANG C, et al. Progress on the mixing of liquid jet injected into a crossflow[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(1):46-57. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hkxb201401004
    [7]
    SONG J K, CAIN C C, LEE J G. Liquid jets in subsonic air crossflow at elevated pressure[J]. Journal of Engineering for Gas Turbines and Power, 2015, 137(4):041502. doi: 10.1115/1.4028565
    [8]
    刘静.超声速气流中横向燃油喷雾的数值模拟和实验研究[D].北京: 北京航空航天大学, 2010. http://cdmd.cnki.com.cn/Article/CDMD-10006-1012023923.htm

    LIU J. Numerical and experimental investigation of fuel spray in supersonic cross flow[D]. Beijing: Beihang University, 2010. http://cdmd.cnki.com.cn/Article/CDMD-10006-1012023923.htm
    [9]
    AMIGHI A. Liquid jets in crossflow at elevated temperatures and pressures[D]. Toronto: University of Toronto, 2015.
    [10]
    柴进.超声速来流横向射流喷雾结构及速度场的图像分析方法研究[D].长沙: 国防科学技术大学, 2015. http://cdmd.cnki.com.cn/Article/CDMD-90002-1017835345.htm

    CHAI J. Image analysis investigations on structures and velocity field of liquid jets in a supersonic crossflow[D]. Changsha: National University of Defense Technology, 2015. http://cdmd.cnki.com.cn/Article/CDMD-90002-1017835345.htm
    [11]
    TONCU D C, MIRZAEI M, SOLEIMANI S. Emulsified jetfuel flame characterization with image processing[J]. Journal of the Energy Institute, 2019, 92(3):567-577. doi: 10.1016/j.joei.2018.04.002
    [12]
    MIRZAEI M, RAFSANJANI H K. Assessment of image processing methods to characterize the precise shape of the jet head in the hypersonic jet flows[J]. Flow Measurement and Instrumentation, 2018, 64:142-154. doi: 10.1016/j.flowmeasinst.2018.10.016
    [13]
    MVLLER T, SÄNGER A, HABISREUTHER P, et al. Simulation of the primary breakup of a high-viscosity liquid jet by a coaxial annular gas flow[J]. International Journal of Multiphase Flow, 2016, 87:212-228. doi: 10.1016/j.ijmultiphaseflow.2016.09.008
    [14]
    ELSHAMY O M. Experimental investigations of steady and dynamic behavior of transverse liquid jets[D]. Cincinnati: University of Cincinnati, 2007.
    [15]
    刘刚. MATLAB数字图像处理[M].北京:机械工业出版社, 2010. https://max.book118.com/html/2018/0223/154393257.shtm
    [16]
    WU W, YANG X M, LI H, et al. A novel scheme for infrared image enhancement by using weighted least squares filter and fuzzy plateau histogram equalization[J]. Multimedia Tools and Applications, 2017, 76(23):24789-24817. doi: 10.1007/s11042-017-4643-8
    [17]
    于霞霞.基于并行模拟退火遗传算法的二维熵多阈值分割[D].武汉: 武汉理工大学, 2016. http://cdmd.cnki.com.cn/Article/CDMD-10497-1018805739.htm

    YU X X. The multi-dimensional double-entropy threshold segmentation based on parallel genetic simulated annealing algorithm[D]. Wuhan: Wuhan University of Technology, 2016. http://cdmd.cnki.com.cn/Article/CDMD-10497-1018805739.htm
    [18]
    PUN T. A new method for grey-level picture thresholding using the entropy of the histogram[J]. Signal Processing, 1980, 2(3):223-237. doi: 10.1016/0165-1684(80)90020-1
    [19]
    种劲松, 周孝宽, 王宏琦.基于遗传算法的最佳熵阈值图像分割法[J].北京航空航天大学学报, 1999, 25(6):747. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bjhkhtdxxb199906031

    CHONG J S, ZHOU X K, WANG H Q. Entropic thresholding method based on genetic algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics, 1999, 25(6):747. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bjhkhtdxxb199906031
    [20]
    SAMBANDAM R K, JAYARAMAN S. Self-adaptive dragonfly based optimal thresholding for multilevel segmentation of digital images[J]. Journal of King Saud University-Computer and Information Sciences, 2018, 30(4):449-461. doi: 10.1016/j.jksuci.2016.11.002
    [21]
    李锋, 阚建霞.基于Sobel算子的图像快速二维最大熵阈值分割算法[J].计算机科学, 2015, 42(s1):209-210, 220. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jsjkx2015z1050

    LI F, KAN J X. Fast two-dimensional maximum entropy threshold segmentation method based on sobel operator[J]. Computer Science, 2015, 42(s1):209-210, 220. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jsjkx2015z1050
    [22]
    WU P K, KIRKENDALL K, FULLER R, et al. Breakupprocesses of liquid jets in subsonic crossflows[R]. AIAA-1996-3024, 1996.
    [23]
    MATHUR N, MATHUR S, MATHUR D. A novel approach to improve sobel edge detector[J]. Procedia Computer Science, 2016, 93:431-438. doi: 10.1016/j.procs.2016.07.230
    [24]
    蔺东杰.街面围堵系统中二维凸包算法的研究[D].开封: 河南大学, 2017. http://cdmd.cnki.com.cn/Article/CDMD-10475-1017227335.htm

    LIN D J. Research on two-dimensional convex hull algorithm in street containment system[D]. Kaifeng: Henan University, 2017. http://cdmd.cnki.com.cn/Article/CDMD-10475-1017227335.htm
    [25]
    VICH G, LEDOUX M. Investigation of a liquid jet in a subsonic cross-flow[J]. International Journal of Fluid Mechanics Research, 1997, 24(1-3):1-12. doi: 10.1615/InterJFluidMechRes.v24.i1-3.10
    [26]
    BIROUK M, IYOGUN C O, POPPLEWELL N. Role of viscosity on trajectory of liquid jets in a cross-airflow[J]. Atomization and Sprays, 2007, 17(3):267-287. doi: 10.1615/AtomizSpr.v17.i3.30
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(1)

    Article Metrics

    Article views (232) PDF downloads(13) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return