Volume 34 Issue 3
Jun.  2020
Turn off MathJax
Article Contents
LIU Jun, CAI Jinsheng, ZHOU Fangqi. Mach number sensitivity analysis of cavity noise[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(3): 104-110. doi: 10.11729/syltlx20190079
Citation: LIU Jun, CAI Jinsheng, ZHOU Fangqi. Mach number sensitivity analysis of cavity noise[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(3): 104-110. doi: 10.11729/syltlx20190079

Mach number sensitivity analysis of cavity noise

doi: 10.11729/syltlx20190079
  • Received Date: 2019-06-25
  • Rev Recd Date: 2019-09-17
  • Publish Date: 2020-06-25
  • Sensitivity analysis plays an important role in assessing the importance of parameters and calculating the uncertainty. Mach number sensitivity analysis of cavity noise at subsonic, transonic and supersonic speed has been investigated by wind tunnel experiments in this study. At subsonic speed, the Mach number is changed by adjusting the opening of the valve, and the nominal increment of the Mach number is 0.01.At supersonic speed, the continuous change of the Mach number is achieved by changing the angle of attack of the model, and the increment of angle of attack is 1 degree. The experimental results show that the fluctuating pressure coefficient at the rear of the cavity increases with the increase of the Mach number at the subsonic speed, while decreases with the increase of the Mach number at the supersonic speed. At transonic speed, the fluctuating pressure coefficient has the largest sensitivity derivative to the Mach number. In the case of modal switching, the derivative of St to Mach number for the dominant acoustic mode is negative. The peak value of the dominant acoustic mode's power spectral density increases with the increase of Mach number at subsonic speed, while decreases at supersonic speed. The obtained sensitivity results can be used not only for the uncertainty assessment of the aerodynamic noise load in the embedded weapon bay, but also for a better understanding of the cavity noise characteristics.
  • loading
  • [1]
    董雪, 张德平.基于极限学习机的武器装备作战效能全局敏感性分析[J].计算机与现代化, 2018(5):86-92. doi: 10.3969/j.issn.1006-2475.2018.05.018

    DONG X, ZHANG D P. Global sensitivity analysis and optimization of submarine combat effectiveness based on extreme learning machine[J]. Computer and Modernization, 2018(5):86-92. doi: 10.3969/j.issn.1006-2475.2018.05.018
    [2]
    周智超.面向武器装备系统效能的敏感性分析[J].火力与指挥控制, 2013, 38(2):98-102. doi: 10.3969/j.issn.1002-0640.2013.02.026

    ZHOU Z C. Sensitivity analysis of oriented to system effectiveness of weapons and equipment[J]. Fire Control & Command Control, 2013, 38(2):98-102. doi: 10.3969/j.issn.1002-0640.2013.02.026
    [3]
    李永乐, 苏茂材, 王士刚, 等.大跨度钢桁梁铁路斜拉桥刚度参数敏感性分析[J].振动与冲击, 2015, 34(2):166-170. http://d.old.wanfangdata.com.cn/Periodical/zdycj201502030

    LI Y L, SU M C, WANG S G, et al. Sensitivity of structural stiffness parameters of long-span steel truss cable-stayed railway bridge[J]. Journal of Vibration and Shock, 2015, 34(2):166-170. http://d.old.wanfangdata.com.cn/Periodical/zdycj201502030
    [4]
    李加武, 方成, 侯利明, 等.大跨径桥梁静风稳定参数的敏感性分析[J].振动与冲击, 2014, 33(4):124-130. doi: 10.3969/j.issn.1000-3835.2014.04.023

    LI J W, FANG C, HOU L M, et al. Sensitivity analysis for aerostatic stability parameter of a long-span bridge[J]. Journal of Vibration and Shock, 2014, 33(4):124-130. doi: 10.3969/j.issn.1000-3835.2014.04.023
    [5]
    李宪文, 刘锦, 郭钢, 等.致密砂岩储层渗吸数学模型及应用研究[J].特种油气藏, 2017, 24(6):79-83. doi: 10.3969/j.issn.1006-6535.2017.06.015

    LI X W, LIU J, GUO G, et al. Mathematical model of imbibition and its application in tight sandstone reservoir[J]. Special Oil & Gas Reservoirs, 2017, 24(6):79-83. doi: 10.3969/j.issn.1006-6535.2017.06.015
    [6]
    杨旭东, 乔志德, 朱兵.升力系数不变时跨音速机翼阻力优化设计[J].计算物理, 2003, 20(3):233-238. doi: 10.3969/j.issn.1001-246X.2003.03.009

    YANG X D, QIAO Z D, ZHU B. Optimization design of transonic wings with drag reduction and constant lift coefficients[J]. Chinese Journal of Computation Physics, 2003, 20(3):233-238. doi: 10.3969/j.issn.1001-246X.2003.03.009
    [7]
    江奕廷, 白俊强, 孙智伟.基于参数敏感性分析的反设计方法[J].航空计算技术, 2012, 42(6):65-69. doi: 10.3969/j.issn.1671-654X.2012.06.017

    JIANG Y T, BAI J Q, SUN Z W. Inverse airfoil design based on sensitive analysis of parameterized methods[J]. Aeronautical Computing Technique, 2012, 42(6):65-69. doi: 10.3969/j.issn.1671-654X.2012.06.017
    [8]
    罗鹏程, 傅攀峰.武器装备敏感性分析方法综述[J].计算机工程与设计, 2008, 29(21):5546-5549. http://d.old.wanfangdata.com.cn/Periodical/jsjgcysj200821042

    LUO P C, FU P F. Review on weapons and equipment sensitivity analysis methods[J]. Computer Engineering and Design, 2008, 29(21):5546-5549. http://d.old.wanfangdata.com.cn/Periodical/jsjgcysj200821042
    [9]
    金镭, 张曙光, 孙金标.现代战斗机空战能力评估及敏感性分析[J].北京航空航天大学学报, 2009, 35(1):82-86. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bjhkhtdxxb200901020

    JIN L, ZHANG S G, SUN J B. Air-combat ability and sensitivity analysis of modern fighter aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics, 2009, 35(1):82-86. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bjhkhtdxxb200901020
    [10]
    唐冕, 陈政清.大跨径自锚式悬索桥气动参数的敏感性分析[J].湖南科技大学学报(自然科学版), 2008, 23(1):55-59. http://d.old.wanfangdata.com.cn/Periodical/xtkyxyxb200801013

    TANG M, CHEN Z Q. Sensitivity analysis of aerodynamic parameter for long-span self-anchored suspension bridges[J]. Journal of Hunan University of Science & Technology, 2008, 23(1):55-59. http://d.old.wanfangdata.com.cn/Periodical/xtkyxyxb200801013
    [11]
    徐林程, 王刚, 武洁, 等.翼型模型几何误差对气动性能影响的自动微分分析方法[J].空气动力学学报, 2014, 32(4):551-556. doi: 10.7638/kqdlxxb-2013.0097

    XU L C, WANG G, WU J, et al. An automatic differentiation method for uncertainty analysis due to airfoil configuration variation[J]. Acta Aerodynamica Sinica, 2014, 32(4):551-556. doi: 10.7638/kqdlxxb-2013.0097
    [12]
    徐林程, 王刚, 武洁, 等.翼型风洞试验中不确定性分析的自动微分方法[J].航空学报, 2014, 35(8):2102-2111. http://d.old.wanfangdata.com.cn/Periodical/hkxb201408003

    XU L C, WANG G, WU J, et al. Uncertainty analysis of airfoil wind tunnel tests with automatic differentiation[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(8):2102-2111. http://d.old.wanfangdata.com.cn/Periodical/hkxb201408003
    [13]
    ALBRING T A, SAGEBAUM M, GAUGER N R. Efficient aerodynamic design using the discreteadjoint method in SU2[R]. AIAA-2016-3518, 2016.
    [14]
    YANG G D, RONCH A D. Aerodynamic shape optimisation of benchmark problems using SU2[R]. AIAA-2018-0412, 2018.
    [15]
    LIU H K, YAN C, ZHAO Y T, et al. Uncertainty and sensitivity analysis of flow parameters on aerodynamics of a hypersonic inlet[J].Acta Astronautica, 2018, 151:703-716. doi: 10.1016/j.actaastro.2018.07.011
    [16]
    PLENTOVICH E B. Three-dimensional cavity flow fields at subsonic and transonic speeds[R]. NASA-TM-4209, 1990.
    [17]
    THANGAMANI V, KNOWLES K, SADDINGTON A J. The effects of scaling on high subsonic cavity flow oscillations and control[R]. AIAA-2012-2052, 2012.
    [18]
    MERRICK J D. Influence of Mach number and dynamic pressure on cavity tones and freedrop trajectories[D]. Ohio: Air Force Air University, 2014.
    [19]
    王显圣, 杨党国, 刘俊, 等.弹性空腔流致噪声/结构振动特性试验[J].航空学报, 2017, 38(7):182-191. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hkxb201707015

    WANG X S, YANG D G, LIU J, et al. Test on interactions between aeroacoustic noise and structural vibration in elastic cavity flow[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(7):182-191. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hkxb201707015
    [20]
    周方奇, 杨党国, 王显圣, 等.前缘直板扰流对高速空腔的降噪效果分析[J].航空学报, 2018, 39(4):133-143. http://d.old.wanfangdata.com.cn/Periodical/hkxb201804011

    ZHOU F Q, YANG D G, WANG X S, et al. Effect of leading edge plate on high speed cavity noise control[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(4):133-143. http://d.old.wanfangdata.com.cn/Periodical/hkxb201804011
    [21]
    HANKEY W L, SHANG J S. Analyses of pressure oscillations in an open cavity[J]. AIAA Journal, 1980, 18(8):892-898. doi: 10.2514/3.50831
    [22]
    熊红亮, 袁格, 李潜, 等.可压缩自由剪切层纹影试验研究[J].流体力学实验与测量, 2003, 17(2):74-77, 83. doi: 10.3969/j.issn.1672-9897.2003.02.015

    XIONG H L, YUAN G, LI Q, et al. Flow visualization about a compressible shear flow[J]. Experiments and Measurements in Fluid Mechanics, 2003, 17(2):74-77, 83. doi: 10.3969/j.issn.1672-9897.2003.02.015
    [23]
    ROSSITER J E.Wind-tunnel experiments on the flow over rectangular cavities at subsonic and transonic speeds: 64037[R]. RAE Technical Report No.64037, 1964.
    [24]
    CHANDRA B U, CHAKRAVARTHY S R. Experimental investigation of cavity-induced acoustic oscillations in confined supersonic flow[J]. Journal of Fluids Engineering, 2005, 127(4):761-769. doi: 10.1115/1.1949642
    [25]
    WANG Y C, TAN L, WANG B B, et al. Numerical investigation on frequency jump of flow over a cavity using large eddy simulation[J]. Journal of Fluids Engineering, 2015, 137(8):081203. doi: 10.1115/1.4030002
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(3)

    Article Metrics

    Article views (206) PDF downloads(15) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return