Ji Junze, Li Zhufei, Zhang Enlai, et al. Shock interactions in near-axisymmetric internal contraction flows[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(5): 1-9. doi: 10.11729/syltlx20190046
Citation: Ji Junze, Li Zhufei, Zhang Enlai, et al. Shock interactions in near-axisymmetric internal contraction flows[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(5): 1-9. doi: 10.11729/syltlx20190046

Shock interactions in near-axisymmetric internal contraction flows

doi: 10.11729/syltlx20190046
  • Received Date: 2019-01-31
  • Rev Recd Date: 2019-05-05
  • Publish Date: 2019-10-25
  • The near-axisymmetric contraction flow in internal cones with different angles of attack is proposed to simplify the complicated three-dimensional shock interactions in a hypersonic inward-turning inlet. The interactions of the shock at near-axisymmetric contraction conditions are revealed efficiently using a combination of experiments in a shock tunnel and numerical simulations. The results show that the axisymmetric incident shock strengthens toward the central axis due to the convergence effect until a Mach disk is formed. It has been shown that the Mach reflection at the central axis is an inevitable phenomenon, which prevents the convergence and enhancement of the axisymmetric incident shock even for a small compression angle of the leading edge of the internal cone. However, when the incoming flow has an angle of attack, the flow field deviates slightly from the axisymmetric state and presents complex three-dimensional characteristics. The windward incident shock strengthens faster than the leeward incident shock along the flow direction. As a result, the shock interaction position on the symmetry plane deviates from the axis and the regular reflection can occur. The local pressure immediately downstream the reflection position for the regular reflection can reach a much higher level than that behind the Mach disk for the conditions where the Mach reflection occurs. Moreover, with the increase of the leading edge compression angle of the internal cone, the critical angle of attack for the appearance of the regular reflection on the symmetry plane also increases.
  • loading
  • [1]
    You Y C. An overview of the advantages and concerns of hypersonic inward turning inlets[R]. AIAA 2011-2269, 2011.
    [2]
    Ben-Dor G. Shock wave reflection phenomena[M].New York:Springer, 2007.
    [3]
    Timofeev E, Mölder S, P Voinovich, et al. Shock wave reflections in axisymmetric flow[C]//Proc of the 23rd International Symposium on Shock Waves. 2001.
    [4]
    李永洲.马赫数分布可控的高超声速内收缩进气道及其一体化设计研究[D].南京: 南京航空航天大学, 2014. http://cdmd.cnki.com.cn/Article/CDMD-10287-1015951706.htm

    Li Y Z. Investigation of hypersonic inward turning inlet with controlled Mach number distribution and its integrated design[D]. Nanjing: Nanjing University of Aeronautics and Astronau-tics, 2014. http://cdmd.cnki.com.cn/Article/CDMD-10287-1015951706.htm
    [5]
    尤延铖, 梁德旺.内乘波式进气道内收缩基本流场研究[J].空气动力学学报, 2008, 26(2):203-207. doi: 10.3969/j.issn.0258-1825.2008.02.012

    You Y C, Liang D W. Investigation of internal compression flow field for internal waverider-derived inlet[J]. Acta Aerodynamica Sinica, 2008, 26(2):203-207. doi: 10.3969/j.issn.0258-1825.2008.02.012
    [6]
    王卫星, 李博, 郭荣伟.不同反压下椭圆形隔离段流场特征与气动性能[J].航空动力学报, 2010(3):647-653. http://d.old.wanfangdata.com.cn/Periodical/hkdlxb201003027

    Wang W X, Li B, Guo R W. Flow characteristic and aerodynamic performance in elliptic shape isolator at different back pressures[J]. Journal of Aerospace Power, 2010(3):647-653. http://d.old.wanfangdata.com.cn/Periodical/hkdlxb201003027
    [7]
    何粲.双模态超燃冲压发动机隔离段流动特性研究[D].绵阳: 中国空气动力研究与发展中心, 2015.

    He C.Investigation of flow characteristics in the dual-mode scramjet isolator[D]. Mianyang: China Aerodynamics Research and Development Center, 2015.
    [8]
    Mölder S. Internal, axisymmetric, conical flow[J]. AIAA Journal, 1967, 5(7):1252-1255. doi: 10.2514/3.4179
    [9]
    Hornung H G. Oblique shock reflection from an axis of symmetry[J]. Journal of Fluid Mechanics, 2000, 409:1-12. doi: 10.1017/S0022112099007831
    [10]
    Hornung H G, Schwendeman D W. Oblique shock reflection from an axis of symmetry:shock dynamics and relation to the Guderley singularity[J]. Journal of Fluid Mechanics, 2001, 438:231-245. doi: 10.1017/S0022112001004360
    [11]
    Filippi A A. Supersonic flow fields resulting from axisymmetric internal surface curvature[J]. Journal of Fluid Mechanics, 2017, 831:271-288. doi: 10.1017/jfm.2017.643
    [12]
    Mölder S. Curved aerodynamic shock waves[D]. Montreal: McGill University, 2012.
    [13]
    Mölder S. Curved shock theory[J]. Shock Waves, 2016, 26(4):337-353. doi: 10.1007/s00193-015-0589-9
    [14]
    Mölder S. Flow behind concave shock waves[J]. Shock Waves, 2017, 27(1-4):1-10. http://d.old.wanfangdata.com.cn/Periodical/bzycj201705010
    [15]
    Li Z F, Gao W Z, Jiang H L, et al. Unsteady behaviors of a hypersonic inlet caused by throttling in shock tunnel[J]. AIAA Journal, 2013, 51(10):2458-2492. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=68780f03a6ac94cba81e8f6eb8323a3d
    [16]
    李祝飞, 高文智, 李鹏, 等.一种进气道自起动特性检测方法[J].实验流体力学, 2013, 27(2):14-18. doi: 10.3969/j.issn.1672-9897.2013.02.003

    Li Z F, Gao W Z, Li P, et al.A test method for inlet self-starting ability detection[J]. Journal of Experiments in Fluid Mechanics, 2013, 27(2):14-18. doi: 10.3969/j.issn.1672-9897.2013.02.003
    [17]
    张恩来, 李祝飞, 李一鸣, 等.斜激波入射V形钝前缘溢流口激波干扰研究[J].实验流体力学, 2018, 32(3):50-57. http://www.syltlx.com/CN/abstract/abstract11105.shtml

    Zhang E L, Li Z F, Li Y M, et al. Investigation on the shock interactions between an incident shock and a plate with V-shaped blunt leading edge[J].Journal of Experiments in Fluid Mechanics, 2018, 32(3):50-57. http://www.syltlx.com/CN/abstract/abstract11105.shtml
    [18]
    李一鸣, 李祝飞, 杨基明, 等.典型高超声速内转式进气道激光散射流场显示[J].航空学报, 2017, 38(12):138-149. http://d.old.wanfangdata.com.cn/Periodical/hkxb201712013

    Li Y M, Li Z F, Yang J M, et al. Flow visualization of a typical inward-turning inlet using laser scatting[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(12):138-149. http://d.old.wanfangdata.com.cn/Periodical/hkxb201712013
    [19]
    Miles R B, Lempert W R, Forkey J N. Laser rayleigh scattering[J]. Measurement Science and Technology, 2001, 12(5):R33-R51. http://d.old.wanfangdata.com.cn/Periodical/gxxb200803031
    [20]
    肖丰收.若干典型高超声速激波干扰流动特性研究[D].合肥: 中国科学技术大学, 2016. http://cdmd.cnki.com.cn/Article/CDMD-10358-1016319976.htm

    Xiao F S. Research on flow characteristics of Some typical hypersonic shock wave interactions[D]. Hefei: University of Science and Technology of China, 2016. http://cdmd.cnki.com.cn/Article/CDMD-10358-1016319976.htm
    [21]
    阎超, 涂正光, 于晓红, 等.激波碰撞干扰流动非定常效应的数值研究[J].北京航空航天大学学报, 2003, 29(3):214-217. doi: 10.3969/j.issn.1001-5965.2003.03.007

    Yan C, Tu Z G, Yu X H. Numerical research on unsteady effect of shock-shock interference flow[J]. Journal of Beijing University of Aeronautics and Astronautics, 2003, 29(3):214-217. doi: 10.3969/j.issn.1001-5965.2003.03.007
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(16)

    Article Metrics

    Article views (246) PDF downloads(21) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return