Zhao Jianfu, Zhou Lei, Zhong Lijia, et al. Experimental and numerical investigations of flame acceleration after passing through a perforated plate in a confined space[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(4): 11-20. doi: 10.11729/syltlx20190033
Citation: Zhao Jianfu, Zhou Lei, Zhong Lijia, et al. Experimental and numerical investigations of flame acceleration after passing through a perforated plate in a confined space[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(4): 11-20. doi: 10.11729/syltlx20190033

Experimental and numerical investigations of flame acceleration after passing through a perforated plate in a confined space

doi: 10.11729/syltlx20190033
  • Received Date: 2019-03-27
  • Rev Recd Date: 2019-06-09
  • Publish Date: 2019-08-25
  • Essentially, the engine knock or the super-knock is always accompanied by the interactions between the turbulent flame and the shock wave, with rapid chemical energy release. Thus, it is of great significance to investigate the interactions between the turbulent flame and shock waves which is the key to reveal the mechanism of the knock or super-knock. And the flame acceleration inducing pressure waves is the basic premise for the study of flame-shock interactions. Based on a self-designed constant volume chamber and 3-dimensional numerical simulation by Converge, the mechanism and impact factors of the flame acceleration after passing through the perforated plate are investigated. In addition, the influence of the initial pressure on the combustion phenomenon is discussed. According to the flame morphology and the flame tip velocity, the evolution of the flame acceleration is divided into three stages, which are the laminar flame stage, the jet flame stage and the turbulent flame stage. The flow field results show that there exists a strong jet flow at the perforated plate before the flame reaches, which drives the flame acceleration. However, after the flame passes through the perforated plate, the flow velocity downstream of the flame front decreases as it departs from the flame, which means the flow is driven by the flame. In addition, it is found that the turbulent flame velocity, pressure and pressure oscillation increase with the increase of the initial pressure.
  • loading
  • [1]
    Hancock D, Fraser N, Jeremy M, et al. A new 3 cylinder 1.2 l advanced downsizing technology demonstrator engine[R]. SAE Technical Paper, 2008-01-0611, 2008.
    [2]
    Heywood J B. Internal combustion engine fundamentals[M]. New York:Mcgraw-hill, 1988.
    [3]
    Inoue T, Inoue Y, Ishikawa M. Abnormal combustion in a highly boosted SI engine-the occurrence of super knock[R]. SAE Technical Paper, 2012-01-1141, 2012.
    [4]
    Attard W P, Toulson E, Watson H, et al. Abnormal combustion including mega knock in a 60% downsized highly turbocharged PFI engine[R]. SAE Technical Paper, 2010-01-1456, 2010.
    [5]
    Bäuerle B, Hoffmann F, Behrendt F, et al. Detection of hot spots in the end gas of an internal combustion engine using two-dimensional LIF of formaldehyde[J]. Symposium (Internatio-nal) on Combustion, 1994, 25(1):135-141. doi: 10.1016/S0082-0784(06)80637-5
    [6]
    Kawahara N, Tomita E. Visualization of auto-ignition and pressure wave during knocking in a hydrogen spark-ignition engine[J]. Interna-tional Journal of Hydrogen Energy, 2009, 34(7):3156-3163. doi: 10.1016/j.ijhydene.2009.01.091
    [7]
    Zahdeh A, Rothenberger P, Nguyen W, et al. Fundamental approach to investigate pre-ignition in boosted SI engines[J]. SAE International Journal of Engines, 2011, 4(1):246-273. doi: 10.4271/2011-01-0340
    [8]
    Zaccardi J M, Duval L, Pagot A. Development of specific tools for analysis and quantification of pre-ignition in a boosted SI engine[J]. SAE International Journal of Engines, 2009, 2(1):1587-1600. doi: 10.4271/2009-01-1795
    [9]
    Takeuchi K, Fujimoto K, Hirano S, et al. Investigation of engine oil effect on abnormal combustion in turbocharged direct injection-spark ignition engines[R]. SAE Technical Paper, 2012-01-1615, 2012.
    [10]
    Qi Y, Wang Z, Wang J, et al. Effects of thermodynamic conditions on the end gas combustion mode associated with engine knock[J]. Combustion and Flame, 2015, 162(11):4119-4128. doi: 10.1016/j.combustflame.2015.08.016
    [11]
    Robert A, Richard S, Colin O, et al. LES study of deflagration to detonation mechanisms in a downsized spark ignition engine[J]. Combustion and Flame, 2015, 162(7):2788-2807. doi: 10.1016/j.combustflame.2015.04.010
    [12]
    Luo X, Teng H, Hu T, et al. An experimental investigation on low speed pre-ignition in a highly boosted gasoline direct injection engine[J]. SAE International Journal of Engines, 2015, 8(2):520-528. doi: 10.4271/2015-01-0758
    [13]
    Ciccarelli G, Dorofeev S. Flame acceleration and transition to detonation in ducts[J]. Progress in Energy and Combustion Science, 2008, 34(4):499-550. doi: 10.1016/j.pecs.2007.11.002
    [14]
    Oppenheim A K, Soloukhin R I. Experiments in gasdynamics of explosions[J]. Annual Review of Fluid Mechanics, 1973, 5(1):31-58. doi: 10.1146/annurev.fl.05.010173.000335
    [15]
    Lee J H S, Moen I O. The mechanism of transition from deflagration to detonation in vapor cloud explosions[J]. Progress in Energy & Combustion Science, 1980, 6(4):359-389. https://www.sciencedirect.com/science/article/pii/0360128580900118
    [16]
    Shepherd J E, Lee J H S. On the transition from deflagration to detonation[M]. New York:Springer, 1992.
    [17]
    Gelfand B E, Frolov S M, Nettleton M A. Gaseous detonations-A selective review[J]. Progress in Energy & Combustion Science, 1991, 17(4):327-371. https://www.sciencedirect.com/science/article/pii/036012859190007A
    [18]
    Oran E S, Gamezo V N. Origins of the deflagration-to-detonation transition in gas-phase combustion[J]. Combustion and Flame, 2007, 148(1-2):4-47. doi: 10.1016/j.combustflame.2006.07.010
    [19]
    Johansen C T, Ciccarelli G. Visualization of the unburned gas flow field ahead of an accelerating flame in an obstructed square channel[J]. Combustion and Flame, 2009, 156(2):405-416. doi: 10.1016/j.combustflame.2008.07.010
    [20]
    Dorofeev S B. Flame acceleration and explosion safety applica-tions[J]. Proceedings of the Combustion Institute, 2011, 33(2):2161-2175. https://www.sciencedirect.com/science/article/pii/S1540748910003925
    [21]
    Zipf R K, Gamezo V N, Mohamed K M, et al. Deflagration-to-detonation transition in natural gas-air mixtures[J]. Combustion and Flame, 2014, 161(8):2165-2176. doi: 10.1016/j.combustflame.2014.02.002
    [22]
    Maeda S, Minami S, Okamoto D, et al. Visualization of deflagration-to-detonation transitions in a channel with repeated obstacles using a hydrogen-oxygen mixture[J]. Shock Waves, 2016, 26(5):573-586. doi: 10.1007/s00193-016-0660-1
    [23]
    Goodwin G B, Houim R W, Oran E S. Effect of decreasing blockage ratio on DDT in small channels with obstacles[J]. Combustion and Flame, 2016, 173:16-26. doi: 10.1016/j.combustflame.2016.07.029
    [24]
    Shchelkin K I. Influence of tube roughness on the formation and detonation propagation in gas[J]. Zhurnal Eksperimental'noi i Teoreticheskoi Fiziki, 1940, 10(7):823-827.
    [25]
    Zeldovich Y B. On the theory on transition to detonation in gases[J]. Zhurnal Tekhnicheskoi Fiziki, 1947, 17(1):3-26.
    [26]
    Kuznetsov M, Alekseev V, Matsukov I, et al. DDT in a smooth tube filled with a hydrogen-oxygen mixture[J]. Shock Waves, 2005, 14(3):205-215. doi: 10.1007/s00193-005-0265-6
    [27]
    Ciccarelli G, Fowler C J, bardon M. Effect of obstacle size and spacing on the initial stage of flame acceleration in a rough tube[J]. Shock Waves, 2005, 14(3):161-166. doi: 10.1007/s00193-005-0259-4
    [28]
    Roy G D, Frolov S M, Borisov A A, et al. Pulse detonation propulsion:challenges, current status, and future perspective[J]. Progress in Energy and Combustion Science, 2004, 30(6):545-672. doi: 10.1016/j.pecs.2004.05.001
    [29]
    Johansen C, Ciccarelli G. Characterization of the flow field ahead of a flame propagating in an obstructed channel[C]//Proceedings of the 21st colloquium on the dynamics of explosions and reactive systems. 2007.
    [30]
    Frolov S M, Semenov I V, Utkin P S, et al. Enhancement of shock-to-detonation transition in channels with regular shaped obstacles[C]//Proceedings of 21st ICDERS. 2007.
    [31]
    Gamezo V N, Ogawa T, Oran E S. Effect of obstacle spacing on flame acceleration and DDT in obstructed channels[C]//Proceedings of 21st ICDERS. 2007.
    [32]
    Bychkov V, Valiev D, Eriksson L E. Physical mechanism of ultrafast flame acceleration[J]. Physical Review Letters, 2008, 101(16):164501. doi: 10.1103/PhysRevLett.101.164501
    [33]
    Petchenko A, Bychkov V, Akkerman V Y, et al. Violent folding of a flame front in a flame-acoustic resonance[J]. Physical Review Letters, 2006, 97(16):164501. doi: 10.1103/PhysRevLett.97.164501
    [34]
    Brouillette M. The richtmyer-meshkov instability[J]. Fluid Mechanics, 2002, 34(34):445-468. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_d14d4036fc1bbf9f6fbac10be75a916d
    [35]
    Xiao H H, Houim R W, Oran E S. Formation and evolution of distorted tulip flames[J]. Combustion and Flame, 2015, 162(11):4084-4101. doi: 10.1016/j.combustflame.2015.08.020
    [36]
    Xiao H H, Makarov D, Sun J, et al. Experimental and numerical investigation of premixed flame propagation with distorted tulip shape in a closed duct[J]. Combustion and Flame, 2012, 159(4):1523-1538. doi: 10.1016/j.combustflame.2011.12.003
    [37]
    Valiev D M, Akkerman V, Kuznetsov M, et al. Influence of gas compression on flame acceleration in the early stage of burning in tubes[J]. Combustion and Flame, 2013, 160(1):97-111. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bd4c28bbd91f51263926de92f0b9bcca
    [38]
    Yoshizawa A, Horiuti K. A statistically-derived subgrid-scale kinetic energy model for the large-eddy simulation of turbulent flows[J]. Journal of the Physical Society of Japan, 1985, 54:2834-2839. doi: 10.1143/JPSJ.54.2834
    [39]
    Menon S, Calhoon W H. Subgrid mixing and molecular transport modeling in a reacting shear layer[J]. Symposium (International) on Combustion, 1996, 26:59-66. doi: 10.1016/S0082-0784(96)80200-1
    [40]
    Bradley D, Harper C M. The development of instabilities in laminar explosion flames[J]. Combustion and Flame, 1994, 99(3-4):562-572. doi: 10.1016/0010-2180(94)90049-3
    [41]
    Chaudhuri S, Wu F J, Zhu D L, et al. Flame speed and self-similar propagation of expanding turbulent premixed flames[J]. Physical Review Letters, 2012, 108(4):44503. doi: 10.1103/PhysRevLett.108.044503
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(1)

    Article Metrics

    Article views (129) PDF downloads(3) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return