Volume 33 Issue 6
Dec.  2019
Turn off MathJax
Article Contents
Huang Zhipeng, Zhao Mengtian, Yang Xigang, et al. Experimental and theoretical model study on effective thermal conductivity of SOFC porous electrode[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(6): 1-6. doi: 10.11729/syltlx20190018
Citation: Huang Zhipeng, Zhao Mengtian, Yang Xigang, et al. Experimental and theoretical model study on effective thermal conductivity of SOFC porous electrode[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(6): 1-6. doi: 10.11729/syltlx20190018

Experimental and theoretical model study on effective thermal conductivity of SOFC porous electrode

doi: 10.11729/syltlx20190018
  • Received Date: 2019-01-21
  • Rev Recd Date: 2019-03-22
  • Publish Date: 2019-12-25
  • The flow heat transfer and chemical reaction inside the Solid Oxide Fuel Cell (SOFC) are complex, and it is easy to generate thermal imbalance zones. Obtaining high-precision effective thermal conductivity of porous electrodes is of great significance for the establishment of numerical analysis models of multi-physics field coupling and the thermal management. In this paper, an experimental platform and measurement system for the effective heat conduction system of porous materials was designed and constructed, which is based on the steady-state method. The temperature distribution of the porous electrode test specimens was measured in detail in the temperature range of 372.1~932.4K. Through the theoretical analysis of heat transfer in porous materials, the calculation model of the comprehensive effective thermal conductivity of temperature-corrected SOFC porous electrodes was constructed using the scale factor t, which combines the existing EMT and ME1 mathematical models. In addition, the validity and high precision of the effective thermal conductivity model were verified by comparing the calculated values with the experimental measurements of the surface temperatures of the three test specimens with the porosity of 0.2349~0.4178.
  • loading
  • [1]
    Gupta N, Yadav G D. Solid oxide fuel cell: a review[J]. International Research Journal of Engineering and Technology, 2016, 3(6): 1006-1011. http://d.old.wanfangdata.com.cn/Periodical/xyjsclygc200508001
    [2]
    Koteswararao P, Suresh M B, Wanic B N, et al. Review on ceramics for solid oxide fuel cells[J]. International Journal of Scientific Research in Science, Engineering and Technology, 2017, 3(8): 342-346.
    [3]
    Zeng S M, Xu M, Parbey J, et al. Thermal stress analysis of a planar anode-supported solid oxide fuel cell: Effects of anode porosity[J]. International Journal of Hydrogen Energy, 2017, 42(31): 20239-20248. doi: 10.1016/j.ijhydene.2017.05.189
    [4]
    Barelli L, Bidini G, Ottaviano A. Solid oxide fuel cell modeling: Electrochemical performance and thermal management during load following operation[J]. Energy, 2016, 115: 107-119. doi: 10.1016/j.energy.2016.08.107
    [5]
    Boaro M, Aricò A S. Advances in medium and high temperature solid oxide fuel cell technology[M]. Cham, Switzerland: Springer, 2017.
    [6]
    Rao Z H, Wang Q C, Huang C L. Investigation of the thermal performance of phase change material/mini-channel coupled battery thermal management system[J]. Applied Energy, 2016, 164: 659-669. doi: 10.1016/j.apenergy.2015.12.021
    [7]
    姚凯, 郑会保, 刘运传, 等.导热系数测试方法概述[J].理化检验(物理分册), 2018, 54(10): 741-747. http://d.old.wanfangdata.com.cn/Periodical/lhjy-wl201810007

    Yao K, Zheng H B, Liu Y C, et al. Survey of measurement methods for thermal conductivity[J]. Physical Testing and Chemical Analysis (Part A: Physical Testing), 2018, 54(10): 741-747. http://d.old.wanfangdata.com.cn/Periodical/lhjy-wl201810007
    [8]
    刘世杰, 吴鹏章, 王梦蛟, 等.一种基于稳态热流法的导热系数测定仪器及方法[J].橡塑技术与装备, 2017, 43(17): 45-47. http://d.old.wanfangdata.com.cn/Periodical/xsjsyzb201717010

    Liu S J, Wu P Z, Wang M J, et al. An instrument and method for measuring the thermal conductivity based on steady-state heat flow method[J]. China Rubber/Plastics Technology and Equipment, 2017, 43(17): 45-47. http://d.old.wanfangdata.com.cn/Periodical/xsjsyzb201717010
    [9]
    任佳, 蔡静.导热系数测量方法及应用综述[J].计测技术, 2018, 38(S1): 46-49. http://d.old.wanfangdata.com.cn/Periodical/hkjcjs2018z1014

    Ren J, Cai J. Summary of measurement methods and applications of thermal conductivity[J]. Metrology & Measure-ment Technology, 2018, 38(S1): 46-49. http://d.old.wanfangdata.com.cn/Periodical/hkjcjs2018z1014
    [10]
    Radovic M, Lara-Curzio E, Trejo R M, et al. Thermophysical properties of YSZ and Ni-YSZ as a function of temperature and porosity[J]. Advances in Solid Oxide Fuel Cells Ⅱ: Ceramic Engineering and Science Proceedings, 2009, 27(4): 79-85. http://cn.bing.com/academic/profile?id=8bebe7971bd1bf149388c9bc1e7ce6f1&encoded=0&v=paper_preview&mkt=zh-cn
    [11]
    付文强, 高辉, 薛征欣, 等.多孔材料有效导热系数的实验和模型研究[J].中国测试, 2016, 42(5): 124-130. http://d.old.wanfangdata.com.cn/Periodical/zgcsjs201605026

    Fu W Q, Gao H, Xue Z X, et al. Experimental measurement and calculation of thermal conductivity of porous material[J]. China Measurement & Test, 2016, 42(5): 124-130. http://d.old.wanfangdata.com.cn/Periodical/zgcsjs201605026
    [12]
    王刚, 魏高升, 黄平瑞, 等.改进的新有效介质理论模型分析多孔绝热材料的有效导热系数[J].中国电机工程学报, 2016, 36(9): 2465-2469. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdjgcxb201609019

    Wang G, Wei G S, Huang P R, et al. Effective thermal conductivity analysis on porous thermal insulation material by the improved novel effective medium theory model[J]. Proceedings of the CSEE, 2016, 36(9): 2465-2469. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdjgcxb201609019
    [13]
    付俊鹏, 蔡九菊.基于谢尔宾斯基地毯模型对烧结矿散料有效导热系数的研究[J].冶金能源, 2017, 36: 59-61. http://www.cqvip.com/QK/95660X/2017A01/673049683.html

    Fu J P, Cai J J. Research of the effective thermal conductivity of sinter packed based on sierpinski carpet[J]. Energy for Metallurgical Industry, 2017, 36: 59-61. http://www.cqvip.com/QK/95660X/2017A01/673049683.html
    [14]
    王世芳, 吴涛.多孔介质有效热导率的一种新模型[J].工程热物理学报, 2016, 37(12): 2626-2630. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gcrwlxb201612022

    Wang S F, Wu T. A new fractal model for the effective thermal conductivity of porous media[J]. Journal of Engineering Thermophysics, 2016, 37(12): 2626-2630. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gcrwlxb201612022
    [15]
    Zhai S P, Zhang P, Shi B, et al. Effective thermal conductivity of polymer composites: Theoretical models and simulation models[J]. International Journal of Heat and Mass Transfer, 2018, 117: 358-374. doi: 10.1016/j.ijheatmasstransfer.2017.09.067
    [16]
    Carson J K, Lovatt S J, Tanner D J, et al. Predicting the effective thermal conductivity of unfrozen, porous foods[J]. Journal of Food Engineering, 2006, 75(3): 297-307. doi: 10.1016/j.jfoodeng.2005.04.021
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(3)

    Article Metrics

    Article views (106) PDF downloads(5) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return