Ma Hu, Xie Zongqi, Deng Li, et al. Experimental study on the longitudinal pulse detonation in rotating detonation engine[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(4): 33-38, 64. doi: 10.11729/syltlx20190015
Citation: Ma Hu, Xie Zongqi, Deng Li, et al. Experimental study on the longitudinal pulse detonation in rotating detonation engine[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(4): 33-38, 64. doi: 10.11729/syltlx20190015

Experimental study on the longitudinal pulse detonation in rotating detonation engine

doi: 10.11729/syltlx20190015
  • Received Date: 2019-01-14
  • Rev Recd Date: 2019-04-25
  • Publish Date: 2019-08-25
  • The longitudinal pulse detonation phenomenon (LPD) in the annular combustor is experimentally studied, and the operation process of this mode is analyzed through the combination of the high frequency dynamic pressure measurement and the high speed imaging. The results show that for the hydrogen and air mixtures, the LPD occurs under the condition that the blockage ratio at the exit is larger than or equal to 0.6 and the air mass flux at the minimal cross-sectional area is greater than 200kg/(m2·s). The LPD in the combustor undergoes decoupling and re-initiation in each cycle, and the shock wave reflected from the exit develops into a detonation at the head of the combustor, accompanied by severe luminescence. The average propagation velocity of the detonation wave in each cycle is comparable to the sound speed of the combustion products, which leads to the usage of the linear acoustic theory to predict the operation frequency.
  • loading
  • [1]
    Wolański P. Detonative propulsion[J]. Proceedings of the Combustion Institute, 2013, 34(1):125-158. http://d.old.wanfangdata.com.cn/Periodical/yhxb201801013
    [2]
    Anand V, George A S, Driscoll R, et al. Investigation of rotating detonation combustor operation with H2-air mixtures[J]. International Journal of Hydrogen Energy, 2016, 41(2):1281-1292. doi: 10.1016/j.ijhydene.2015.11.041
    [3]
    Russo R M, King P I, Schauer F R, et al. Characterization of pressure rise across a continuous detonation engine[R]. AIAA-2011-6046, 2011.
    [4]
    Bykovskii F A, Zhdan S A, Vedernikov E F. Continuous spin detonations[J]. Journal of Propulsion and Power, 2006, 22(6):1204-1216. doi: 10.2514/1.17656
    [5]
    Liu S, Liu W, Lin Z, et al. Experimental research on the propagation characteristics of continuous rotating detonation wave near the operating boundary[J]. Combustion Science and Technology, 2015, 187(11):1790-1804. doi: 10.1080/00102202.2015.1019620
    [6]
    George A S, Driscoll R, Anand V, et al. On the existence and multiplicity of rotating detonations[J]. Proceedings of the Combustion Institute, 2016, 36(2):2691-2698. https://www.sciencedirect.com/science/article/pii/S1540748916301900
    [7]
    Lin W, Zhou J, Liu S, et al. Experimental study on propagation mode of H2/air continuously rotating detonation wave[J]. International Journal of Hydrogen Energy, 2015, 40(4):1980-1993. doi: 10.1016/j.ijhydene.2014.11.119
    [8]
    Rankin B A, Richardson D R, Caswell A W, et al. Chemiluminescence imaging of an optically accessible non-premixed rotating detonation engine[J]. Combustion and Flame, 2017, 176:12-22. doi: 10.1016/j.combustflame.2016.09.020
    [9]
    Frolov S M, Aksenov V S, Ivanov V S, et al. Large-scale hydrogen-air continuous detonation combustor[J]. International Journal of Hydrogen Energy, 2015, 40(3):1616-1623. doi: 10.1016/j.ijhydene.2014.11.112
    [10]
    Roy A, Ferguson D H, Sidwell T, et al. Experimental study of rotating detonation combustor performance under preheat and back pressure operation[R]. AIAA-2017-1065, 2017.
    [11]
    Anand V, George A S, Driscoll R, et al. Longitudinal pulsed detonation instability in a rotating detonation combustor[J]. Experimental Thermal and Fluid Science, 2016, 77:212-225. doi: 10.1016/j.expthermflusci.2016.04.025
    [12]
    Zhou R, Wang J P. Numerical investigation of flow particle paths and thermodynamic performance of continuously rotating detonation engines[J]. Combustion and Flame, 2012, 159(12):3632-3645. doi: 10.1016/j.combustflame.2012.07.007
    [13]
    Fotia M L, Schauer F, Kaemming T, et al. Experimental study of the performance of a rotating detonation engine with nozzle[J]. Journal of Propulsion and Power, 2015, 31(6):674-681. https://www.researchgate.net/publication/304047379_Experimental_Study_of_the_Performance_of_a_Rotating_Detonation_Engine_with_Nozzle
    [14]
    林伟, 周进, 林志勇, 等. H2/Air连续旋转爆震发动机推力测试(Ⅰ)单波模态下的推力[J].推进技术, 2015, 36(4):495-503.

    Lin W, Zhou J, Lin Z Y, et al. Thrust measurement of H2/Air continuously rotating detonation engine(Ⅰ) thrust under single wave mode[J]. Journal of Propulsion Technology, 2015, 36(4):495-503.
    [15]
    林伟, 周进, 林志勇, 等. H2/Air连续旋转爆震发动机推力测试(Ⅱ)-双波模态下的推力[J].推进技术, 2015, 36(5):641-649. http://www.cnki.com.cn/Article/CJFDTotal-TJJS201505001.htm

    Lin W, Zhou J, Lin Z Y, et al. Thrust measurement of H2/Air continuously rotating detonation engine(Ⅱ) thrust under dual wave mode[J]. Journal of Propulsion Technology, 2015, 36(5):641-649. http://www.cnki.com.cn/Article/CJFDTotal-TJJS201505001.htm
    [16]
    DeBarmore N D, King P I, Schauer F R, et al. Nozzle guide vane integration into rotating detonation engine[R]. AIAA-2013-1030, 2013.
    [17]
    Higashi J, Nakagami S, Matsuoka K, et al. Experimental study of the disk-shaped rotating detonation turbine engine[R]. AIAA-2017-1286, 2017.
    [18]
    Bykovskii F A, Vedernikov E F. Continuous detonation of a subsonic flow of a propellant[J]. Combustion, Explosion and Shock Waves, 2003, 39(3):323-334. doi: 10.1023/A:1023800521344
    [19]
    Wang C, Liu W, Liu S, et al. Experimental investigation on detonation combustion patterns of hydrogen/vitiated air within annular combustor[J]. Experimental Thermal and Fluid Science, 2015, 66:269-278. doi: 10.1016/j.expthermflusci.2015.02.024
    [20]
    Yang C, Wu X, Ma H, et al. Experimental research on initiation characteristics of a rotating detonation engine[J]. Experimental Thermal and Fluid Science, 2016, 71:154-163. doi: 10.1016/j.expthermflusci.2015.10.019
    [21]
    Lieuwen T C. Unsteady combustor physics[M]. Cambridge:Cambridge University Press, 2012.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)

    Article Metrics

    Article views (212) PDF downloads(14) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return