Chen Xing, Shen Junmou, Bi Zhixian, et al. Review on the development of the free-piston high enthalpy impulse wind tunnel and its testing capacities[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(4): 65-80. doi: 10.11729/syltlx20180169
Citation: Chen Xing, Shen Junmou, Bi Zhixian, et al. Review on the development of the free-piston high enthalpy impulse wind tunnel and its testing capacities[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(4): 65-80. doi: 10.11729/syltlx20180169

Review on the development of the free-piston high enthalpy impulse wind tunnel and its testing capacities

doi: 10.11729/syltlx20180169
  • Received Date: 2018-11-05
  • Rev Recd Date: 2019-04-10
  • Publish Date: 2019-08-25
  • The free-piston high enthalpy impulse wind tunnel is one of the main ground testing facilities for the study of the high enthalpy flow, which is able to simulate the hypervelocity flow and is mainly categorized into two types as the high enthalpy shock wind tunnel and the high enthalpy expansion tube wind tunnel. After decades of development, the free-piston high enthalpy impulse wind tunnel can be used not only to study the complex aerodynamics thermodynamics and aero-optic of the aircraft under the hypervelocity free flow, but also to carry out research on technologies such as the free flight, the scramjet and the electromagnetic radiation measurement. The development process is summarized, focusing on the three stages of the basic theoretical research stage, the early construction stage and the practical development stage, in order to provide reference for the development of the large-scale free-piston high enthalpy impulse wind tunnel and its testing capacities.
  • loading
  • [1]
    姜宗林, 俞鸿儒.高超声速气动热力学重要基础问题研究进展[J].气体物理, 2011, 6(4):12-17.

    Jiang Z L, Yu H R. Research progresses on fundamental issues of hypersonic aerothermodynamics[J]. Physics of Gases, 2011, 6(4):12-17.
    [2]
    Anderson J D. Hypersonic and high temperature gas dynamics[M]. Virginia:American Institute of Aeronautics and Astronautics, 2000.
    [3]
    Lu F K, Marren D E. Advanced hypersonic test facilities[M]. Virginia:American Institute of Aeronautics and Astronautics, 2002.
    [4]
    Igra O, Seiler F. Experimental methods of shock wave research[M]. Switzerland:Springer International Publishing, 2016.
    [5]
    Smelt R. Review of aeronautical wind tunnel facilities[M]. Washington D C:The National Academy Press, 1988.
    [6]
    陈强.激波管流动的理论和实验技术[M].合肥:中国科技大学, 1979.

    Chen Q. The theory and experimental technology of shock tube flow[M]. Hefei:University of Science and Technology of China, 1979.
    [7]
    Bushnell D M. Scaling:wind tunnel to flight[J]. Annual Reviews of Fluid Mechanics, 2006, 38:111-128. doi: 10.1146/annurev.fluid.38.050304.092208
    [8]
    Stalker R J. Hypervelocity aerodynamics with chemical nonequilibrium[J]. Annual Reviews of Fluid Mechanics, 1989, 21(1):37-60.
    [9]
    Fomin N A. 110 years of experiments on shock tubes[J]. Journal of Engineering Physics and Thermophysics, 2010, 83(6):1118-1135. doi: 10.1007/s10891-010-0437-9
    [10]
    谌君谋, 陈星, 毕志献, 等.高焓激波风洞试验技术综述[J].空气动力学学报, 2018, 36(4):543-554. doi: 10.7638/kqdlxxb-2017.0165

    Shen J M, Chen X, Bi Z X, et al. Review on experimental technology of high enthalpy shock tunnel[J]. Acta Aerodyna-mica Sinica, 2018, 36(4):543-554. doi: 10.7638/kqdlxxb-2017.0165
    [11]
    Gai S L. Free piston shock tunnels:developments and capabilities[J]. Progress in Aerospace Sciences, 1992, 29(1):1-41. https://www.sciencedirect.com/science/article/pii/037604219290002Y
    [12]
    Jiang Z L, Zhao W, Yu H R. Study on high performance International techniques for high-enthalpy shock tunnels[C]//Proc of the 23rd International Symposium on Shock Waves. 2001.
    [13]
    Stollery J L, Stalker R J. The development and use of free piston wind tunnels[C]//Proc of the 14th International Sympo-sium on Shock Tubes and Waves. 1983.
    [14]
    Stalker R J, Besant R W. A method for production of strong shocks in a gas driven shock tube[R]. National Research Council Report GD-81, 1959.
    [15]
    Stalker R J, Morgan R G. The university of Queensland free piston shock tunnel T-4: Initial operation and preliminary calibration[C]//Proc of the 4th National Space Engineering Symposium. 1988.
    [16]
    Morgan R G. A review of the use of expansion tubes for creating superorbital flows[R]. AIAA-97-0279, 1997.
    [17]
    Hornung H. Experimental hypervelocity flow simulation, needs, achievements and limitations[C]//Proc of the 1st Pacific International Conference on Aerospace Science and Technology. 1993.
    [18]
    McGilvray M, Doherty L J, Morgan R G, et al. T6: the oxford university stalker tunnel[R]. AIAA-2015-3545, 2015.
    [19]
    Burstchell Y, Brun R, Zeitoun D. Two dimensional numerical simulation of the Marseille University free piston shock tunnel-TCM2[C]//Proc of the 18th International Symposium on Shock Waves. 1991.
    [20]
    Hannemann K. High enthalpy flows in the HEG shock tunnel: experiment and numerical rebuilding[R]. AIAA-2003-978, 2003.
    [21]
    Itoh K, Takahashi M, Komuro T. Effect of throat melting on nozzle flow characteristic in high enthalpy shock tunnel[C]//Proc of the 22nd International Symposium on Shock Waves. 1999.
    [22]
    Shen J M, Ma H D, Li C. Initial Measurements of a 2m Mach-10 free-piston shock tunnel at CAAA[C]//Proc of the 31st International Symposium on shock Waves. 2017.
    [23]
    Bi Z X, Zhang B B, Zhu H, et al. Experiments and computations on the compression process in the free piston shock tunnel FD21[C]//Proc of the 5th International Conference on Experimental Fluid Mechanics. 2018.
    [24]
    Hertzberg A. A shock tube method of generating hypersonic flows[J]. Journal of the Aeronautical Science, 1951, 18(12):803-804. doi: 10.2514/8.2124
    [25]
    Stollery J L. Real gas effects on shock-tube performance at high shock strengths[R]. ARC TR CP-403, 1958.
    [26]
    Glick H S, Wurster W H. Shock tube study of dissociation relaxation in oxygen[J]. The Journal of Chemical Physics, 1957, 27(5):1224-1226. doi: 10.1063/1.1743976
    [27]
    Alpher R A, White D R. Flow in shock tubes with area change at the diaphragm section[J]. Journal of Fluid Mechanics, 1958, 3(5):457-470. doi: 10.1017/S0022112058000124
    [28]
    Longwell P A, Reamer H H, Wilburn N P, et al. Ballistic piston for investigating gas phase reactions[J]. Industrial and Engineering Chemistry, 1958, 50(4):603-610. doi: 10.1021/ie50580a027
    [29]
    Stalker R J. Recent developments with free piston drivers[C]//Proc of the 17th International Symposium on Shock Tubes and Waves. 1989.
    [30]
    Greif R. The free piston shock tube[D]. Cambridge: Harvard University, 1962.
    [31]
    Resler E L, Bloxsom D E. Very high number flows by unsteady flow principles[C]//Proc of Cornell University Graduate school of Aeronautical Engineering. 1952.
    [32]
    Bernstein H. A double-diaphragm shock tube to produce transient high Mach number flows[J]. Journal of the Aeronautical Science, 1953, 20(11):790-791. doi: 10.2514/8.2844
    [33]
    Hertzberg A, Smith W E, Glick H S, et al. Modifications of the shock tube for the generation of hypersonic flow[R]. AEDC TN-55-15, 1955.
    [34]
    Trimpi R L. A preliminary theoretical study of the expansion tube, a new device for producing high enthalpy short duration hypersonic gas flows[R]. NASA TR R-133, 1962.
    [35]
    Trimpi R L, Callis L B. A perfect-gas analysis of the expansion tunnel, a modification to the expansion tube[R]. NASA TR R-233, 1965.
    [36]
    Callis L B. A theoretical study of the effect on expansion tube performance of earo changes at primary and secondary diaphragm station[R]. NASA TN D-3303, 1966.
    [37]
    Norfleet G D, Lacey J J, Whitfield J D. Results of an experimental investigation of the performance of an expansion tube[C]//Proc of the 4th Hypervelocity Techniques Sympo-sium. 1965.
    [38]
    Norfleet G D, Loper F C. A theoretical real-gas analysis of the expansion tunnel[R]. Arnold Engineering Development Center TR-66-71, 1966.
    [39]
    Morgan R G, Stalker R J. Double diaphragm driven free piston expansion tube[C]//Proc of the 18th International Symposium on Shock Tubes and Waves. 1991.
    [40]
    Wittliff C E, Wilson M R, Hertzberg A. The tailored interface hypersonic shock tunnel[J]. Journal of the Aerospace Sciences, 1958, 26(1):219-228.
    [41]
    Trass O, Mackey D. Contact surface tailoring in a chemical shock tube[J]. AIAA Journal, 1963, 1(9):2161-2163. doi: 10.2514/3.2019
    [42]
    Flagg R F. Detailed analysis of shock tube tailored condition[R]. RAD-TM-63-64, 1963.
    [43]
    Reddy N M. Shock tube flow analysis with a dimensionless velocity number[R]. NASA-TN-D-5518, 1969.
    [44]
    Hansen C F. Approximations for the thermodynamic and transport properties of high temperature air[R]. NASA-TR-R-50, 1959.
    [45]
    Loubsky W J, Reller J O Jr. Analysis of tailored-interface operation of shock tubes with helium-driven planetary gases[R]. NASA-TN-D-3495, 1966.
    [46]
    Mirels H. Shock tube test time limitation due to turbulent wall boundary layer[J]. AIAA Journal, 1964, 2(1):84-93. doi: 10.2514/3.2218
    [47]
    Stalker C, Morgan R, Tanner R T. Raymond Johnstalker 1930-2014[J]. Historical Records of Australian Science, 2016, 27(1):70-80. doi: 10.1071/HR15012
    [48]
    Stalker R J. The free-piston shock tube[J]. Aeronautical Quarterly, 1966, 17(4):351-370. doi: 10.1017/S0001925900003966
    [49]
    McIntosh M K. Free stream velocity measurements in a high enthalpy shock tunnel[J]. Physics of Fluids, 1971, 14(6):1100-1102. doi: 10.1063/1.1693570
    [50]
    Crane K C, Stalker R J. Mass-spectrometric analysis of hypersonic flows[J]. Journal of Physics D:Applied Physics, 1977, 10(5):679-695. doi: 10.1088/0022-3727/10/5/010
    [51]
    Hornung H G. Non-equilibrium ideal-gas dissociation after a curved shock wave[J]. Journal of Fluid Mechanics, 1976, 74(1):143-159. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=S0022112076001730
    [52]
    Hornung H G, Smith G H. The influence of relaxation on shock detachment[J]. Journal of Fluid Mechanics, 1979, 93(2):225-239. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=S0022112079001865
    [53]
    East R A, Stalker R J. Measurements of heat transfer to a flat plate in a dissociated high-enthalpy laminar air flow[J]. Journal of Fluid Mechanics, 1980, 97(4):673-699. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=S0022112080002753
    [54]
    Ebrahim N A, Sandeman R J. Interferometric studies of carbon dioxide dissociation in free-piston shock tube[J]. Journal of Chemical Physics, 1976, 65(1):3446-3453.
    [55]
    Smart M, Stalker R J, Morgan R, et al. Hypersonic research in Australia[R]. RTO-EN-AVT-150-11, 2008.
    [56]
    Jones J J. Some performance characteristics of the LRC 3.75-inch pilot expansion tube using an unheated hydrogen driver[C]//Proc of the 4th Hypervelocity Techniques Symposium. 1965.
    [57]
    Moore J A. Description and initial operating performance of the Langley 6 inch expansion tube using heated Helium driver gas[R]. NASA-TM-X-3240, 1975.
    [58]
    Miller C G. Flow properties in expansion tube with Helium, Argon, Air and CO2[J]. AIAA Journal, 1974, 12(4):564-566. doi: 10.2514/3.49290
    [59]
    Miller C G, Jones J J. Development and performance of the NASA Langley Research Center expansion tube/tunnel, a hypersonic-hypervelocity real gas facility[C]//Proc of the 14th International Symposium on Shock Tubes and Waves. 1983.
    [60]
    Stewart B, Morgan R G, Jacobs P, et al. The RHYFL facility as a high performance expansion tube for scramjet testing[R]. AIAA-2000-2595, 2000.
    [61]
    Blanks J R. Initial calibration of the AEDC impulse tunnel[R]. AEDC-TR-95-36, 1996.
    [62]
    苟光贤, 黄洁.高焓真实气体效应试验技术研究[C]//第九届高超声速气动力(热)学术交流会议论文集. 1997.
    [63]
    苟光贤.气动中心超高速所自由活塞激波风洞技术研究进展[C]//第二届全国航空航天空气动力学前沿问题学术研讨会, 1996.

    Gou G X. The progress of the free piston shock tunnel at the CARDC hypervelocity research institute[C]//Proc of the 2nd National Symposium on the Frontiers of Aerospace Aerodyna-mics. 1996.
    [64]
    Schemperg K, Mundt C. Study of numerical simulations for optimized operation of the free piston shock tunnel HELM[R]. AIAA-2008-2653, 2008.
    [65]
    McGilvray M, Doherty L J, Morgan R G, et al. T6: The Oxford University stalker tunnel[R]. AIAA-2015-3545, 2015.
    [66]
    Oxford Thermofluids Institute. T6 Stalker Tunnel[EB/OL].[2019-04-09]. http://Oti.eng.ox.ac.uk/facilities/t6-stalker-tunnel.
    [67]
    Stennett S J, Gildfind D E, Jacobs P A. Optimising the X3R reflected shock tunnel free-piston driver for long duration test times[C]//Proc of the 31st International Symposium on Shock Waves. 2017.
    [68]
    Morgan R G, Stalker R J. Double diaphragm driven free piston expansion tube[C]//Proc of the 18th International Symposium on Shock Waves. 1991.
    [69]
    Erdos J, Calleja J, Tamagno J. Increase in the hypervelocity test envelope of the HYPULSE shock-expansion tube[R]. AIAA-94-2524, 1994.
    [70]
    Morgan R G. Superorbital expansion tubes[C]//Proc of the 21st International Symposium on Shock Waves. 1997.
    [71]
    Abdel-Jawad M, Mee D J, Morgan R G, et al. Transient force measurements at superorbital speeds[C]//Proc of the 23rd International Symposium on Shock Waves. 2001.
    [72]
    Sasoh A, Ohnishi Y, Koremoto K. Operation design and performance of a free-piston-driven expansion tube[R]. AIAA-99-0825, 1999.
    [73]
    Tannoy H, Komuro T, Sato K, et al. Basic characteristics of the free-piston driven expansion tube JAXA HEK-1[R]. AIAA-2016-3817, 2016.
    [74]
    Leyva I A. Study of the addition of a divergent nozzle to an expansion tube for increasing test time[R]. AIAA-1994-2533, 1994.
    [75]
    Bakos R J, Calleja J F, Erdos J I, et al. Design, calibration and analysis of a tunnel mode of operation for the HYPULSE facility[R]. AIAA-1996-2194, 1996.
    [76]
    Sudnitsin O. Design and testing of expansion tube with area change[D]. Queensland: the University of Queensland, 2000.
    [77]
    Chue R S M, Bakos R J, Tsai C Y, et al. The design of an expansion tunnel nozzle in HYPULSE[C]//Proc of the 23rd International Symposium on Shock Waves. 2001.
    [78]
    Holden M S, Wadhams T P, Candler G V. Experimental studies in the LENS shock tunnel and expansion tunnel to examine real-gas effects in hypervelocity flows[R]. AIAA-2004-916, 2004.
    [79]
    MecLean M, Dufrene A, Wadhams T, et al. Numerical and experimental characterization of high enthalpy flow in an expansion tunnel flow[R]. AIAA-2010-1562, 2010.
    [80]
    Hornung H G. The piston motion in a free-piston driver for shock tubes and tunnels[R]. GALCIT FM-88-1, 1988.
    [81]
    Beck W H, Eiteberg G, Mclntyre T J, et al. The high enthalpy shock tunnel in Göttingen (HEG)[J]. Shock Waves, 1992, 2(1):677-682.
    [82]
    Labracherie L, Dumitrescu M P, Burtschell Y, et al. On the compression process in a free-piston shock-tunnel[J]. Shock Waves, 1993, 3(1):19-23. doi: 10.1007/BF01414744
    [83]
    徐立功, 王刚.重活塞压缩器性能参数的数值解法[J].中国科学技术大学学报, 1994, 24(3):277-283. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199400622405

    Xu L G, Wang G. Numerical method of calculation performance parameters of a heavy piston compressor[J]. Journal of China University of Science and Technology, 1994, 24(3):277-283. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199400622405
    [84]
    Itoh K, Ueda S, Komuro T, et al. Improvement of a free piston driver for a high-enthalpy shock tunnel[J]. Shock Waves, 1998, 8(4):215-233. doi: 10.1007/s001930050115
    [85]
    朱浩, 沈清, 宫建.自由活塞激波风洞定压驱动时间研究[J].空气动力学学报, 2014, 32(1):45-50. http://d.old.wanfangdata.com.cn/Periodical/kqdlxxb201401007

    Zhu H, Shen Q, Gong J. The constant pressure time of piston driver in free piston shock tunnel[J]. Acta Aerodynamica Sinica, 2014, 32(1):45-50. http://d.old.wanfangdata.com.cn/Periodical/kqdlxxb201401007
    [86]
    Andrianatoa A, Gildfind D, Morgan R. Preliminary develop-ment of high enthalpy conditions for the X3 expansion tube[C]//Proc of the 20th Australasian Fluid Mechanics Conference. 2016.
    [87]
    Andrianatos A, Gildfind D, Morgan R G. Driver condition development for high-enthalpy operation of the X3 expansion tube[C]//Proc of the 31st International Symposium on Shock Waves. 2017.
    [88]
    Mark H. The interaction of a reflected shock wave with the boundary layer in a shock tube[R]. NACA-TM-1418, 1958.
    [89]
    Sudani N, Valiferdowsi B, Hornung H G. Test time increase by delaying driver gas contamination for reflected shock tunnels[J]. AIAA Journal, 2000, 38(9):1497-1503. doi: 10.2514/2.1138
    [90]
    Hannemann K, Schnieder M, Reimann B, et al. The influence and the delay of driver gas contamination in HEG[R]. AIAA-2000-2593, 2000.
    [91]
    Hannemann K, Schramm J M. A closely coupled experimental and numerical approach for hypersonic and high enthalpy flow investigations utilizing the HEGshock tunnel and the DLR TAU code-part 2[R]. RTO-EN-AVT-186, 2010.
    [92]
    Tsai C Y, Bakos R J. Mach 7-21 flight simulation in the HYPLUSE shock tunnel[C]//Proc of the 23rd International Symposium on Shock Waves. 2002.
    [93]
    Doherty L J. An experimental investigation of an airframe integrated 3-D scramjet engine at a Mach 10 flight condition[D]. Queensland: The University of Queensland, 2014.
    [94]
    Nagayama T, Nagai H, Tanno H, et al. Global heat flux measurement using temperature-sensitive paint in high-enthalpy shock tunnel HIEST[R]. AIAA-2017-1682, 2017.
    [95]
    Han S G, Jia G S, Bi Z X, et al. Heat-flux measurement of flat delta olate using phosphor thermography technique in Gun tunnel[C]//Proc of the 31st International Symposium on Shock Waves. 2017.
    [96]
    于靖波, 向星居, 熊红亮, 等.快速响应压敏涂料测试技术与应用[J].实验流体力学, 2018, 32(3):17-32. http://www.syltlx.com/CN/abstract/abstract11102.shtml

    YU J B, Xiang X J, Xiong H L, et al. Measurements and applications of fast response pressure sensitive paint[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(3):17-32. http://www.syltlx.com/CN/abstract/abstract11102.shtml
    [97]
    Tanno H, Komuro T, Ohnishi N, et al. Experimental study on heat flux augmentation in high enthalpy shock tunnels[R]. AIAA-2014-2548, 2014.
    [98]
    Takahashi M, KomuroK, Itoh K H T, et al. Development of a new force measurement method for scramjet testing in a high enthalpy shock tunnel[R]. AIAA-1999-4961, 1999.
    [99]
    Roberson M, Hannemann K. Shortduration force measurement in impulse facilities[R]. AIAA-2006-3439, 2006.
    [100]
    Gardner A D, Hannemann K. Ground testing of the HyShot supersonic combustion flight experiment in HEG and compari-son with flight data[R]. AIAA-2004-3345, 2004.
    [101]
    Itoh K. Aerothermodynamic and scramjet tests in high enthalpy shock tunnel[R]. AIAA-2007-1041, 2007.
    [102]
    Schramm J, Sunami T, Itoh K. Experimental investigation of supersonic combustion in the HIEST and HEG free piston driven shock tunnels[R]. AIAA-2010-7122, 2010.
    [103]
    中国科技网. "一秒跑三千米"我国10000公里/时超燃冲压发动机风洞试验获突破(2018-12-10)[2019-04-09]. http://www.stdaily.com/index/kejixinwen/2018-12/10/content_737584.shtml.
    [104]
    Tanno H, Komuro T, Sato K, et al. Measurement of hypersonic high-enthalpy boundary layer transition on a 7° cone model[R]. AIAA-2010-310, 2010.
    [105]
    Tanno H, Komuro T, Sato K, et al. Free-flight force measure-ment technique in shock tunnel[R]. AIAA-2012-1241, 2012.
    [106]
    Stallings D W, Williams W D. Free-piston shock tunnel test technique development: an AEDC/DLR cooperative program[R]. AEDC-TR-01-5, 2003.
    [107]
    Buttsworth D, D'Souza M, Potter D. Expansion tunnel radiation experiments to support Hayabusa re-entry observa-tions[R]. AIAA-2010-634, 2010.
    [108]
    Andrianatos A, Gildfind D, Morgan R. A study of radiation scaling of high enthalpy flows in expansion tubes[C]//Proc of the 7th Asia-Pacific International Symposium on Aerospace Technology. 2015.
    [109]
    Kychakoff G, Howe R D, Hanson R K, et al. Flow visualiza-tion in combustion gases using planar laser-induced fluorescence[R]. AIAA-1983-405, 1983.
    [110]
    Sappey A D, Sutherland L, Owenby D, et al. Flight-ready TDLAS combustion sensor for the HIFiRE 2 hypersonic research program[R]. AEDC-TR-10-T-6, 2009.
    [111]
    Grisch F, Bounchardy P, Péalat M. CARS studies in hypersonic flows[R]. AIAA-93-3047, 1993.
    [112]
    Ben-Yakar A, Hanson R K. Hypervelocity combustion studies using simulaneous OH-PLIF and schlieren imaging in an expansion tube[R]. AIAA-1999-2453, 1999.
    [113]
    Krishna Y, Sheele S L, O'Byrne S B. A time-resolved tempera-ture measurement system for free-piston shock tunnels[R]. AIAA-2015-2249, 2015.
    [114]
    Boyce R R, Pulford D R N, Housing A F P. Rotational and vibrational temperature measurements using CARS in a hypervelocity shock layer flow and comparisons with CFD calculations[J]. Shock Waves, 1996, 6:41-51. doi: 10.1007/BF02511403
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(21)  / Tables(3)

    Article Metrics

    Article views (714) PDF downloads(42) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return