Yan Bo, Li Meng, Chen Li, et al. Experimental study on temperature measurement of high pressure combustion based on filtered Rayleigh scattering technology[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(4): 27-32. doi: 10.11729/syltlx20180168
Citation: Yan Bo, Li Meng, Chen Li, et al. Experimental study on temperature measurement of high pressure combustion based on filtered Rayleigh scattering technology[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(4): 27-32. doi: 10.11729/syltlx20180168

Experimental study on temperature measurement of high pressure combustion based on filtered Rayleigh scattering technology

doi: 10.11729/syltlx20180168
  • Received Date: 2018-11-14
  • Rev Recd Date: 2019-02-19
  • Publish Date: 2019-08-25
  • In order to explore the temperature measuring ability under the high-pressure condition and in a confined space, the filtered Rayleigh scattering technique is developed based on the iodine molecular ultrafine absorption. The filtered Rayleigh scattering temperature measuring apparatus, consisted of the seed laser, the Nd:YAG laser, the iodine molecule filter and the ICCD camera, is designed. And the iodine filter is used to remove the stray light interference from the soot and wall reflection. Moreover, this apparatus is applied on a high-pressure gas combustor (0.1~0.5MPa) to obtain the temperature distribution above the flat burner quantitatively. The results show that the relative uncertainty in the single-shot imaging is estimated to be about 15%. And a better than 10% agreement to the single point measurement is achieved by the thermocouple. Therefore, the filtered Rayleigh scattering technique is expected to be applied in the temperature measurement of the engine combustion.
  • loading
  • [1]
    Liu J R, Hu Z Y, Zhang Z R. Laser spectroscopy applied to combustion diagnostics[J]. Optics and Precision Engineering, 2011, 19(2):284-296. doi: 10.3788/OPE.20111902.0284
    [2]
    Fourguette D C, Zurni R M, Long M B. Two dimensional Rayleigh thermometry in a turbulent nonpremixed Methane-Hydrogen flame[J]. Combustion Science Technology, 1986, 44(30):307-317. doi: 10.1080-00102208608960310/
    [3]
    俞刚, 范学军.超声速燃烧与高超声速推进[J].力学进展, 2013, 43(5):449-454. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lxjz201305001

    Yu G, Fan X J. Supersonic combustion and hypersonic propul-sion[J]. Progress in Mechanics, 2013, 43(5):449-454. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lxjz201305001
    [4]
    McMillin B K, Palmer J L, Seitzman J M, et al. Two line instantaneous temperature imaging of NO in a scramjet model flow-field[R]. AIAA-93-0044, 1993.
    [5]
    Seitzman J M, Palmer J L, Antonio A L. Instantaneous planar thermometry of shock-heated flows using PLIF of OH[R]. AIAA-93-0802, 1993.
    [6]
    Elliott G S, Glumac N. Molecular filtered Rayleigh scattering applied to combustion turbulence[R]. AIAA-99-0643, 1999.
    [7]
    Elliott G S, Glumac N, Carter C D. Molecular filtered Rayleigh scattering applied to combustion[J]. Measurement Science and Technology, 2001, 12(4):452-466. doi: 10.1088/0957-0233/12/4/309
    [8]
    Miles R B, Lempert W R. Two-dimensional measurement of density, velocity, and temperature in turbulent high-speed air flows by UV Rayleigh scattering[J]. Applied Physics B, 1990, 51(4):1-7. doi: 10.1007/BF00332317
    [9]
    Forkey J N, Lempert W R, Miles R B. Corrected and calibrated I2 absorption model at frequency-doubled Nd:YAG laser wavelengths[J]. Applied Optics, 1997, 36(27):6729-6738. doi: 10.1364/AO.36.006729
    [10]
    Hoffman D, Munch K U, Leipertz A. Two-dimensional temperature determination in sooting flames by filtered Rayleigh scattering[J]. Opt Lett, 1996, 21(7):525-527. doi: 10.1364/OL.21.000525
    [11]
    Doll U, Fischer M, Stockhausen G, et al. Frequency scanning filtered Rayleigh scattering in combustion experiments[C]//Proc of the 16th International Symposium on Applications of Laser Techniques to Fluid Mechanics. 2012.
    [12]
    Doll U, Stockhausen G, Willert C. Pressure, temperature, and three-component velocity fields by filtered Rayleigh scattering velocimetry[J]. Optical Letter, 2017, 42(19):3773-3776. doi: 10.1364/OL.42.003773
    [13]
    Schroll M, Doll U, Stockhausen G, et al. Flow field characterization at the outlet of a lean burn single-sector combustor by laser-optical methods[J]. Journal of Engineering for Gas Turbines and Power, 2017, 139(6):011503. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=3563e908fdf24b72e33bde6ff0a76bc4
    [14]
    王晟, 刘晶儒, 胡志云, 等.用于燃烧场诊断的分子滤波瑞利散射技术[J].光学精密工程, 2011, 19(2):445-461. http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201102032

    Wang S, Liu J R, Hu Z Y, et al. Development of filtered Rayleigh scattering for combustion diagnostic application[J]. Optics and Precision Engineering, 2011, 19(2):445-461. http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201102032
    [15]
    郑尧邦, 陈力, 苏铁, 等.滤波瑞利散射测温技术研究[C]//中国空气动力学会测控技术专委会学术交流会论文集. 2013. http://www.wanfangdata.com.cn/details/detail.do?_type=conference&id=8056120

    Zheng Y B, Chen L, Su T, et al. Study on the temperature measurement by filtered ray-leigh scattering[C]//Proc of Academic Exchange Meeting of China Aerodynamic Society Measurement and Control Technical Committee. 2013. http://www.wanfangdata.com.cn/details/detail.do?_type=conference&id=8056120
    [16]
    Tenti G, Boley C D, Desai R C. On the kinetic model description of Rayleigh-Brillouin scattering from molecular gases[J]. Canadian Journal of Physics, 1974, 52(2):285-290.
    [17]
    Pan X, Shneider M N, Miles R B. Coherent Rayleigh-Brillouin scattering in molecular gases[J]. Physical Review A, 2004, 69(3):33814-33822. doi: 10.1103/PhysRevA.69.033814
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(1)

    Article Metrics

    Article views (235) PDF downloads(16) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return