Fu Yang'aoxiao, Dong Weizhong, Ding Mingsong, et al. Numerical simulation of thermochemical non-equilibrium flow field in arc-jet tunnel[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(3): 1-12. doi: 10.11729/syltlx20180138
Citation: Fu Yang'aoxiao, Dong Weizhong, Ding Mingsong, et al. Numerical simulation of thermochemical non-equilibrium flow field in arc-jet tunnel[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(3): 1-12. doi: 10.11729/syltlx20180138

Numerical simulation of thermochemical non-equilibrium flow field in arc-jet tunnel

doi: 10.11729/syltlx20180138
  • Received Date: 2018-09-28
  • Rev Recd Date: 2019-03-06
  • Publish Date: 2019-06-25
  • Due to the thermochemical non-equilibrium effects and the freezing of species mass fractions and vibration energy, it is difficult to determine the flight conditions based on the arc-jet tunnel test data by extrapolation. In consideration of this problem and based on the idea of the integrated numerical simulation of the nozzle/test section/test model flow field, the numerical simulation of FD-15 arc-jet tunnel test under the typical operating condition is conducted by solving three dimensional Navier-Stokes equations of the thermochemical non-equilibrium flow. Based on the simulation result, the comparison between the numerical simulation and the tunnel test result is presented, and the problem of extrapolating the tunnel test data to flight as well as the influence of the reservoir pressure on extrapolation are discussed. The result shows:(1) the inflow in the test section has a high level of dissociation, and thus the thermochemical non-equilibrium effect is severe. (2) The tunnel test heat flux result is in between the full catalytic heat flux and non-catalytic heat flux of the integrated numerical simulation, which is reasonable and indicates the validity of the computation method and program. (3)The surface pressure and the heat transfer can be influenced by the installation position of the test model. The surface pressure and the heat transfer flux decrease when the distance from the test model to the nozzle exit increases. (4)When the reservoir pressure is low, extrapolation of the tunnel test heat flux data to the flight conditions by binary scaling (keeping total enthalpy and ρL the same) is invalid, and the tunnel test heat flux data also shows discrepancies in extrapolation to flight conditions by partial simulation (keeping total enthalpy and stagnation pressure the same), especially under non-catalytic condition. (5)When the reservoir pressure increases, discrepancies in extrapolation of the tunnel test data are significantly reduced with both binary scaling and partial simulation methods.
  • loading
  • [1]
    董维中, 高铁锁, 丁明松, 等.高超声速飞行器表面温度分布与气动热耦合数值研究[J].航空学报, 2015, 36(1):311-324. http://d.old.wanfangdata.com.cn/Periodical/hkxb201501025

    Dong W Z, Gao T S, Ding M S, et al. Numerical study of coupled temperature distribution and aerodynamic heat for hypersonic vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1):311-324. http://d.old.wanfangdata.com.cn/Periodical/hkxb201501025
    [2]
    丁明松, 董维中, 高铁锁, 等.局部催化特性差异对气动热环境影响的计算分析[J].航空学报, 2018, 39(3):121588. http://d.old.wanfangdata.com.cn/Periodical/hkxb201803005

    Ding M S, Dong W Z, Gao T S, et al. Computational analysis of influence of differences in local catalytic properties on aero-thermal environment[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(3):121588. http://d.old.wanfangdata.com.cn/Periodical/hkxb201803005
    [3]
    丁明松, 董维中, 高铁锁, 等.传感器催化特性差异对气动热影响的计算分析[J].宇航学报, 2017, 38(12):1361-1371. http://d.old.wanfangdata.com.cn/Periodical/yhxb201712014

    Ding M S, Dong W Z, Gao T S, et al. Computational analysis of influence on aero-thermal environments caused by catalytic property distinction of heat flux sensor[J]. Journal of Astronautics, 2017, 38(12):1361-1371. http://d.old.wanfangdata.com.cn/Periodical/yhxb201712014
    [4]
    Lu F K, Marren D E. Advanced hypersonic test facilities[M]. Virginia:American Institute of Astronautics and Aeronautics, 2002.
    [5]
    汪球, 赵伟, 滕宏辉, 等.高焓激波风洞喷管流场非平衡特性研究[J].空气动力学学报, 2015, 33(1):66-71. http://d.old.wanfangdata.com.cn/Periodical/kqdlxxb2015010011

    Wang Q, Zhao W, Teng H H, et al. Numerical simulation of none-equilibrium characteristics of high enthalpy shock tunnel:nozzle flow[J]. Acta Aerodynamica Sinica, 2015, 33(1):245-254. http://d.old.wanfangdata.com.cn/Periodical/kqdlxxb2015010011
    [6]
    张涵信.真实气体流动的相似规律[J].空气动力学学报, 1990, 8(1):1-8. http://cdmd.cnki.com.cn/Article/CDMD-10056-1016183408.htm

    Zhang H X. The similarity law for real gas flow[J]. Acta Aerodynamica Sinica, 1990, 8(1):1-8. http://cdmd.cnki.com.cn/Article/CDMD-10056-1016183408.htm
    [7]
    董维中, 乐嘉陵, 高铁锁.钝体标模高焓风洞试验和飞行试验相关性的数值分析[J].流体力学实验与测量, 2002, 16(2):1-8. doi: 10.3969/j.issn.1672-9897.2002.02.001

    Dong W Z, Le J L, Gao T S. Numerical analysis for correlation of standard model testing in high enthalpy facility and flight test[J]. Experimental Measurements in Fluid Mechanics, 2002, 16(2):1-8. doi: 10.3969/j.issn.1672-9897.2002.02.001
    [8]
    董维中.热化学非平衡效应对高超声速流动影响的数值计算与分析[D].北京: 北京航空航天大学, 1996.

    Dong W Z. Numerical simulation and analysis of thermal-chemical non-equilibrium effects at hypersonic flows[D]. Beijing: Beijing University of Aeronautics and Astronautics, 1996.
    [9]
    曾明, 林贞彬, 柳军, 等.非平衡模拟参数ρL有效性的数值分析[J].力学学报, 2009, 41(2):177-184. doi: 10.3321/j.issn:0459-1879.2009.02.005

    Zeng M, Lin Z B, Liu J, et al. Numerical analysis of the validity of binary scaling parameter ρLin nonequilibrium flow[J]. Chinese Journal of Theoretical and Applied Mechanics, 2009, 41(2):177-184. doi: 10.3321/j.issn:0459-1879.2009.02.005
    [10]
    Gokcen T. Effects of flow field nonequilibrium on convective heat transfer to a blunt body[R]. AIAA-96-0352, 1996.
    [11]
    袁军娅, 蔡国飙, 杨红亮, 等.高焓非平衡气动热环境的试验模拟及影响[J].实验流体力学, 2012, 26(6):35-39. doi: 10.3969/j.issn.1672-9897.2012.06.008

    Yuan J Y, Cai G B, Yang H L, et al. Test simulation of heat environment in high enthalpy nonequilibrium flow and effects[J]. Journal of Experiments in Fluid Mechanics, 2012, 26(6):35-39. doi: 10.3969/j.issn.1672-9897.2012.06.008
    [12]
    Ishihara T, Ogino Y, Ohnishi N, et al. Numerical study on anomalous heating over blunt-body in free-piston shock tunnel HIEST[R]. AIAA-2013-0909, 2013.
    [13]
    Ishihara T, Aizawa R, Ogino Y, et al. Numerical analysis on aerothermodynamic characteristics of blunt-nosed cone in free-piston shock tunnel HIEST[R]. AIAA-2014-1390, 2014.
    [14]
    Holden M S, Wadhams T P, MacLean M, et al. Experiment research analysis in supersonic and hypervelocity flows in the LENS shock tunnels and expansion tunnel[R]. AIAA-2015-3660, 2015.
    [15]
    Vasilevskii E B, Zhestkov B E, Sakharov V I. Numerical simulation and experiment in the induction plasmatron of the VAT-104 wind tunnel[J]. TsAGI Science Journal, 2016, 47(5):457-474. doi: 10.1615/TsAGISciJ.v47.i5
    [16]
    Clemente M D, Trifoni E, Marini M. Numerical and experimental analyses on re-entry vehicle control surface[R]. AIAA-2013-5331, 2013.
    [17]
    曾明.高焓风洞流场测量的数值重建和非平衡效应的数值分析[D].北京: 中国科学院力学研究所, 2006.

    Zeng M. Numerical rebuilding of free-stream measurement and analysis of none-equilibrium effects in high enthalpy tunnel[D]. Beijing: Institute of Mechanics, Chinese Academy of Science, 2007.
    [18]
    曾明, 林贞彬, 郭大华, 等.高焓激波风洞自由流参数的数值重建[J].空气动力学学报, 2009, 27(3):358-362. doi: 10.3969/j.issn.0258-1825.2009.03.017

    Zeng M, Lin Z B, Guo D H, et al. Numerical rebuilding of free stream measurement in the high enthalpy shock tunnel[J]. Acta Aerodynamica Sinica, 2009, 27(3):358-362. doi: 10.3969/j.issn.0258-1825.2009.03.017
    [19]
    Numerical and experimental study of high enthalpy flows in a hypersonic plasma wind tunnel: L3K[R]. AIAA-2011-3777, 2011.
    [20]
    董维中.气体模型对高超声速再入钝体气动参数计算影响的研究[J].空气动力学学报, 2001, 19(2):197-202. doi: 10.3969/j.issn.0258-1825.2001.02.010

    Dong W Z. Thermal and chemical model effect on the calculation of aerodynamic parameter for hypersonic reentry blunt body[J]. Acta Aerodynamica Sinica, 2001, 19(2):197-202. doi: 10.3969/j.issn.0258-1825.2001.02.010
    [21]
    Park C. Non-equilibrium hypersonic aerothermodynamics[M]. New York:John Wiley &Sons, 1990.
    [22]
    Gupta R N, Yos J M, Thompson R A. A review of reaction rates and thermodynamic and transport properties for 11-species air model for chemical and thermal non-equilibrium calculation to 30000K[R]. NASA-TM-101528, 1989.
    [23]
    Dunn M G, Kang S W. Theoretical and experimental studies of reentry plasmas[R]. NASA-CR-2232, 1973.
    [24]
    Anderson J D. Hypersonic and high temperature gas dynamics[M]. New York:McGraw-Hill Book Company, 1989.
    [25]
    Fay J A, Riddle, F R. Theory of stagnation point heat transfer in dissociatedair[J]. Journal of the Aeronautical Science, 1958, 25(2):73-85. http://www.ams.org/mathscinet-getitem?mr=94043
    [26]
    Goulard R. On catalytic recombination rates in hypersonic stagnation heat transfer[J]. Jet Propulsion, 1958, 25(2):733-745. http://cn.bing.com/academic/profile?id=de84553838689feae13d10149cae27ad&encoded=0&v=paper_preview&mkt=zh-cn
    [27]
    Muylaert J, Walpot L, Hauser J, et al. Standard model testing in the European high enthalpy facility F4 and extrapolation to flight[R]. AIAA-92-3905, 1992.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(22)  / Tables(5)

    Article Metrics

    Article views (338) PDF downloads(32) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return